Wildfire assessment using machine learning algorithms in different regions

被引:0
|
作者
Moghim, Sanaz [1 ]
Mehrabi, Majid [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Azadi Ave, Tehran, Iran
来源
FIRE ECOLOGY | 2024年 / 20卷 / 01期
基金
美国海洋和大气管理局;
关键词
Wildfire; Fire regime; Machine learning; Random forest; Logistic regression; Fire Susceptibility map; Conservation ecology; SUPPORT VECTOR MACHINE; FOREST-FIRE DANGER; LOGISTIC-REGRESSION; SPATIAL-PATTERN; CLIMATE-CHANGE; BOREAL FOREST; SUSCEPTIBILITY; CANADA; PREDICTION; PROVINCE;
D O I
10.1186/s42408-024-00335-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
BackgroundClimate change and human activities are two main forces that affect the intensity, duration, and frequency of wildfires, which can lead to risks and hazards to the ecosystems. This study uses machine learning (ML) as an effective tool for predicting wildfires using historical data and influential variables. The performance of two machine learning algorithms, including logistic regression (LR) and random forest (RF), to construct wildfire susceptibility maps is evaluated in regions with different physical features (Okanogan region in the US and Jam & eacute;sie region in Canada). The models' inputs are eleven physically related variables to output wildfire probabilities.ResultsResults indicate that the most important variables in both areas are land cover, temperature, wind, elevation, precipitation, and normalized vegetation difference index. In addition, results reveal that both models have temporal and spatial generalization capability to predict annual wildfire probability at different times and locations. Generally, the RF outperforms the LR model in almost all cases. The outputs of the models provide wildfire susceptibility maps with different levels of severity (from very high to very low). Results highlight the areas that are more vulnerable to fire. The developed models and analysis are valuable for emergency planners and decision-makers in identifying critical regions and implementing preventive action for ecological conservation. AntecedentesEl cambio clim & aacute;tico y las actividades humanas son dos de las fuerzas principales que afectan la intensidad, duraci & oacute;n, y frecuencia de los incendios, lo que puede conducir a riesgos e incertidumbres en los ecosistemas. Este estudio us & oacute; la t & eacute;cnica de aprendizaje autom & aacute;tico (machine learning) como una herramienta efectiva para predecir incendios de vegetaci & oacute;n usando datos hist & oacute;ricos y variables influyentes. La performance de dos algoritmos del aprendizaje autom & aacute;tico, incluyendo regresiones log & iacute;sticas (LR) y bosques al azar (Random Forest, RF), para construir mapas de susceptibilidad a los incendios, fue evaluado en regiones con diferentes caracter & iacute;sticas f & iacute;sicas (la regi & oacute;n de Okanogan en los EEUU y la de Jam & eacute;sie en Canad & aacute;). Los inputs del modelo fueron once variables f & iacute;sicamente relacionadas y cuyos resultados fueron las probabilidades de incendios.ResultadosLos resultados indican que las variables m & aacute;s importantes en esas dos & aacute;reas son la cobertura vegetal, la temperatura, el viento, la elevaci & oacute;n, la precipitaci & oacute;n, y el NDVI (Indice Normalizado de Vegetaci & oacute;n). Adicionalmente, los resultados revelan que ambos modelos tienen la capacidad de generar espacial y temporalmente la predicci & oacute;n de la probabilidad anual de la ocurrencia de incendios en tiempos y ubicaciones diferentes. Generalmente, el RF excede al modelo LR casi todos los casos. Como resultado, el modelo provee de mapas de susceptibilidad con diferentes niveles de severidad (desde muy altos a muy bajos). Los resultados tambi & eacute;n resaltan las & aacute;reas que son m & aacute;s vulnerables al fuego. Los modelos desarrollados y el an & aacute;lisis son muy valiosos para los que planifican las emergencias y, para los decisores, para identificar regiones cr & iacute;ticas e implementar acciones preventivas para la conservaci & oacute;n ecol & oacute;gica.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Failure Prediction of Municipal Water Pipes Using Machine Learning Algorithms
    Liu, Wei
    Wang, Binhao
    Song, Zhaoyang
    WATER RESOURCES MANAGEMENT, 2022, 36 (04) : 1271 - 1285
  • [42] Wildfire Time Estimation using a Machine Learning Algorithms Interaction Mechanism for Endemic Tree Species Recognition
    Velasquez, Washington
    Sanchez-Guzman, Guillermo
    Jijon-Veliz, Freddy
    Alvarez-Alvarado, Manuel S.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 729 - 733
  • [43] Assessment of Landslide Susceptibility of the Wisnickie Foothills Mts. (The Flysch Carpathians, Poland) Using Selected Machine Learning Algorithms
    Zydron, Tymoteusz
    Demczuk, Piotr
    Gruchot, Andrzej
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [44] A Comparative Analysis of Machine Learning Algorithms to Predict Liver Disease
    Ghosh, Mounita
    Raihan, Md Mohsin Sarker
    Raihan, M.
    Akter, Laboni
    Bairagi, Anupam Kumar
    Alshamrani, Sultan S.
    Masud, Mehedi
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (03) : 917 - 928
  • [45] Machine learning methods for wildfire risk assessment
    Brys, Carlos
    Martinez, David Luis La Red
    Marinelli, Marcelo
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [46] Prediction of landslides by machine learning algorithms and statistical methods in Iran
    Khezri, Saeed
    Ahmadi Dehrashid, Atefeh
    Nasrollahizadeh, Bahram
    Moayedi, Hossein
    Ahmadi Dehrashid, Hossein
    Azadi, Hossein
    Scheffran, Juergen
    ENVIRONMENTAL EARTH SCIENCES, 2022, 81 (11)
  • [47] Comparison of Performance of Machine Learning Algorithms for Cervical Cancer Classification
    Karani, Hamza
    Gangurde, Ashish
    Dhumal, Gauri
    Gautam, Waidehi
    Hiran, Samiksha
    Marathe, Abha
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [48] Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions
    Fathizad, Hassan
    Taghizadeh-Mehrjardi, Ruhollah
    Ardakani, Mohammad Ali Hakimzadeh
    Zeraatpisheh, Mojtaba
    Heung, Brandon
    Scholten, Thomas
    AGRONOMY-BASEL, 2022, 12 (03):
  • [49] Wildfire Risk Assessment in Liangshan Prefecture, China Based on An Integration Machine Learning Algorithm
    Xie, Lingxiao
    Zhang, Rui
    Zhan, Junyu
    Li, Song
    Shama, Age
    Zhan, Runqing
    Wang, Ting
    Lv, Jichao
    Bao, Xin
    Wu, Renzhe
    REMOTE SENSING, 2022, 14 (18)
  • [50] Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms
    Binh Thai Pham
    Shirzadi, Ataollah
    Shahabi, Himan
    Omidvar, Ebrahim
    Singh, Sushant K.
    Sahana, Mehebub
    Asl, Dawood Talebpour
    Bin Ahmad, Baharin
    Nguyen Kim Quoc
    Lee, Saro
    SUSTAINABILITY, 2019, 11 (16)