Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review

被引:0
作者
Acheampong, Adolf [1 ,2 ]
Bondzie-Quaye, Precious [1 ,2 ]
Fetisoa, Monia Ravelonandrasana [1 ,2 ]
Huang, Qing [1 ,2 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Intelligent Machines, CAS Key Lab High Magnet Field & Iron Beam Phys Bio, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Grad Sch, Sci Isl Branch, Hefei 230026, Peoples R China
关键词
Microalgae; Low-temperature plasma (LTP); Mutagenesis; Stimulation; Mutant breeding; Astaxanthin; ASTAXANTHIN; HYDROGEN; FOOD; DECONTAMINATION; ACCUMULATION; MUTAGENESIS; ALGAE; WATER; ARTP;
D O I
10.1016/j.biortech.2024.132019
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation. Also, this review suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae. By shedding light on the benefits and applications of LTP, we hope to inspire new solutions to the challenges of commercial-scale microalgae development.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Comprehensive biomedical applications of low temperature plasmas
    Duarte, Simone
    Panariello, Beatriz H. D.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2020, 693
  • [22] Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation
    Wang, Shi-Qing
    Huang, Guo-Qing
    Li, Yu-Peng
    Xiao, Jun-Xia
    Zhang, Yan
    Jiang, Wen-Li
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2015, 241 (01) : 103 - 113
  • [23] Enhancing sustainability: microalgae cultivation for biogas enrichment and phycoremediation of palm oil mill effluent - a comprehensive review
    Djarot, Ira Nurhayati
    Pawignya, Harsa
    Handayani, Titin
    Widyastuti, Netty
    Nuha, Nuha
    Arianti, Forita Dyah
    Pertiwi, Miranti Dian
    Rifai, Akhmad
    Isharyadi, Febrian
    Wijayanti, Sri Peni
    Nur, Muhamad Maulana Azimatun
    ENVIRONMENTAL POLLUTANTS AND BIOAVAILABILITY, 2024, 36 (01)
  • [24] Review of modern low-temperature adiabatic calorimetry
    Tan Zhicheng
    Di Youying
    PROGRESS IN CHEMISTRY, 2006, 18 (09) : 1234 - 1251
  • [25] Low-temperature electrolysis system modelling: A review
    Olivier, Pierre
    Bourasseau, Cyril
    Bouamama, Pr. Belkacem
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 78 : 280 - 300
  • [26] Mechanism of peptide modification by low-temperature microwave plasma
    Motrescu, Iuliana
    Ogino, Akihisa
    Tanaka, Shigeyasu
    Fujiwara, Taketomo
    Kodani, Shinya
    Kawagishi, Hirokazu
    Popa, Gheorghe
    Nagatsu, Masaaki
    SOFT MATTER, 2011, 7 (10) : 4845 - 4850
  • [27] Hydrogen production by low-temperature plasma decomposition of liquids
    Bulychev, N. A.
    Kazaryan, M. A.
    Averyushkin, A. S.
    Chernou, A. A.
    Gusev, A. L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (33) : 20934 - 20938
  • [28] The 2022 Plasma Roadmap: low temperature plasma science and technology
    Adamovich, I
    Agarwal, S.
    Ahedo, E.
    Alves, L. L.
    Baalrud, S.
    Babaeva, N.
    Bogaerts, A.
    Bourdon, A.
    Bruggeman, P. J.
    Canal, C.
    Choi, E. H.
    Coulombe, S.
    Donko, Z.
    Graves, D. B.
    Hamaguchi, S.
    Hegemann, D.
    Hori, M.
    Kim, H-H
    Kroesen, G. M. W.
    Kushner, M. J.
    Laricchiuta, A.
    Li, X.
    Magin, T. E.
    Thagard, S. Mededovic
    Miller, V
    Murphy, A. B.
    Oehrlein, G. S.
    Puac, N.
    Sankaran, R. M.
    Samukawa, S.
    Shiratani, M.
    Simek, M.
    Tarasenko, N.
    Terashima, K.
    Thomas, E., Jr.
    Trieschmann, J.
    Tsikata, S.
    Turner, M. M.
    van der Walt, I. J.
    van de Sanden, M. C. M.
    von Woedtke, T.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
  • [29] Aerial microalgae Coccomyxa simplex isolated from a low-temperature, low-light environment, and its biofilm growth and lipid accumulation
    Aburai, Nobuhiro
    Nishida, Akihiro
    Abe, Katsuya
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2021, 60
  • [30] Antioxidants alleviated low-temperature stress in microalgae by modulating reactive oxygen species to improve lipid production and antioxidant defense
    Song, Xueting
    Kong, Fanying
    Liu, Bing-Feng
    Song, Qingqing
    Ren, Nan-Qi
    Ren, Hong-Yu
    BIORESOURCE TECHNOLOGY, 2024, 413