Multi-modal dataset creation for federated learning with DICOM-structured reports

被引:0
作者
Toelle, Malte [1 ,2 ,3 ]
Burger, Lukas [1 ,2 ,3 ]
Kelm, Halvar [1 ,2 ,3 ]
Andre, Florian [1 ,2 ,3 ]
Bannas, Peter [1 ,4 ]
Diller, Gerhard [5 ]
Frey, Norbert [1 ,2 ,3 ]
Garthe, Philipp [5 ]
Gross, Stefan [1 ,6 ]
Hennemuth, Anja [1 ,4 ,7 ,8 ,9 ,10 ,11 ]
Kaderali, Lars [1 ,6 ]
Krueger, Nina [1 ,7 ,8 ,9 ,10 ,11 ]
Leha, Andreas [1 ,12 ]
Martin, Simon [1 ,13 ]
Meyer, Alexander [1 ,7 ]
Nagel, Eike [1 ,13 ]
Orwat, Stefan [5 ]
Scherer, Clemens [1 ,14 ]
Seiffert, Moritz [1 ,15 ]
Seliger, Jan Moritz [1 ,4 ]
Simm, Stefan [1 ,6 ]
Friede, Tim [1 ,8 ,9 ,10 ]
Seidler, Tim [1 ,16 ,17 ]
Engelhardt, Sandy [1 ,2 ,3 ]
机构
[1] DZHK German Ctr Cardiovasc Res, All Partner Sites, Munich, Germany
[2] Heidelberg Univ Hosp, Dept Cardiol Angiol & Pneumol, Heidelberg, Germany
[3] Informat Life Inst, Heidelberg, Germany
[4] Univ Med Ctr Hamburg Eppendorf, Dept Diagnost & Intervent Radiol & Nucl Med, Hamburg, Germany
[5] Univ Hosp Munster, Clin Cardiol 3, Munster, Germany
[6] Univ Med Greifswald, Inst Bioinformat, Greifswald, Germany
[7] Deutsch Herzzentrum Charite DHZC, Inst Comp Assisted Cardiovasc Med, Berlin, Germany
[8] Charite Univ Med Berlin, Berlin, Germany
[9] Free Univ Berlin, Berlin, Germany
[10] Humboldt Univ, Berlin, Germany
[11] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
[12] Univ Med Ctr Gottingen, Dept Med Stat, Gottingen, Germany
[13] Goethe Univ, Inst Expt & Translat Cardiovasc Imaging, Frankfurt, Germany
[14] Ludwig Maximilians Univ Munchen, LMU Univ Hosp, Dept Med 1, Munich, Germany
[15] Univ Med Ctr Hamburg Eppendorf, Univ Heart & Vasc Ctr Hamburg, Dept Cardiol, Hamburg, Germany
[16] Univ Med Gottingen, Dept Cardiol & Pneumol, Gottingen, Germany
[17] Justus Liebig Univ Giessen, Dept Cardiol, Kerckhoff Clin, Campus Kerckhoff, Giessen, Germany
关键词
Structured reports; Multi-modal; Federated learning; DICOM; Transcatheter aortic valve replacement; Data-filtering;
D O I
10.1007/s11548-025-03327-y
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Federated training is often challenging on heterogeneous datasets due to divergent data storage options, inconsistent naming schemes, varied annotation procedures, and disparities in label quality. This is particularly evident in the emerging multi-modal learning paradigms, where dataset harmonization including a uniform data representation and filtering options are of paramount importance.Methods DICOM-structured reports enable the standardized linkage of arbitrary information beyond the imaging domain and can be used within Python deep learning pipelines with highdicom. Building on this, we developed an open platform for data integration with interactive filtering capabilities, thereby simplifying the process of creation of patient cohorts over several sites with consistent multi-modal data.Results In this study, we extend our prior work by showing its applicability to more and divergent data types, as well as streamlining datasets for federated training within an established consortium of eight university hospitals in Germany. We prove its concurrent filtering ability by creating harmonized multi-modal datasets across all locations for predicting the outcome after minimally invasive heart valve replacement. The data include imaging and waveform data (i.e., computed tomography images, electrocardiography scans) as well as annotations (i.e., calcification segmentations, and pointsets), and metadata (i.e., prostheses and pacemaker dependency).Conclusion Structured reports bridge the traditional gap between imaging systems and information systems. Utilizing the inherent DICOM reference system arbitrary data types can be queried concurrently to create meaningful cohorts for multi-centric data analysis. The graphical interface as well as example structured report templates are available at https://github.com/Cardio-AI/fl-multi-modal-dataset-creation.
引用
收藏
页码:485 / 495
页数:11
相关论文
共 25 条
  • [1] Highdicom: a Python']Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology
    Bridge, Christopher P.
    Gorman, Chris
    Pieper, Steven
    Doyle, Sean W.
    Lennerz, Jochen K.
    Kalpathy-Cramer, Jayashree
    Clunie, David A.
    Fedorov, Andriy Y.
    Herrmann, Markus D.
    [J]. JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1719 - 1737
  • [2] Chambon P, 2022, ARXIV, DOI DOI 10.48550/ARXIV.2211.12737
  • [3] Clunie DA, 2000, DICOM STRUCTURED REP
  • [4] Clunie DA, 2007, CANCER INFORM, V4, P33
  • [5] National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence
    Fedorov, Andrey
    Longabaugh, William J. R.
    Pot, David
    Clunie, David A.
    Pieper, Steven D.
    Gibbs, David L.
    Bridge, Christopher
    Herrmann, Markus D.
    Homeyer, Andre
    Lewis, Rob
    Aerts, Hugo J. W. L.
    Krishnaswamy, Deepa
    Thiriveedhi, Vamsi Krishna
    Ciausu, Cosmin
    Schacherer, Daniela P.
    Bontempi, Dennis
    Pihl, Todd
    Wagner, Ulrike
    Farahani, Keyvan
    Kim, Erika
    Kikinis, Ron
    [J]. RADIOGRAPHICS, 2023, 43 (12)
  • [6] HL7 Fast Healthcare Interoperability Resources (HL7 FHIR) in digital healthcare ecosystems for chronic disease management: Scoping review
    Gazzarata, Roberta
    Almeida, Joao
    Lindskold, Lars
    Cangioli, Giorgio
    Gaeta, Eugenio
    Fico, Giuseppe
    Chronaki, Catherine E.
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 189
  • [7] Transcatheter aortic valve implantation 10-year anniversary: review of current evidence and clinical implications
    Genereux, Philippe
    Head, Stuart J.
    Wood, David A.
    Kodali, Susheel K.
    Williams, Mathew R.
    Paradis, Jean-Michel
    Spaziano, Marco
    Kappetein, A. Pieter
    Webb, John G.
    Cribier, Alain
    Leon, Martin B.
    [J]. EUROPEAN HEART JOURNAL, 2012, 33 (19) : 2388 - +
  • [8] CHAOS Challenge- combined (CT-MR) healthy abdominal organ segmentation
    Kavur, A. Emre
    Gezer, N. Sinem
    Baris, Mustafa
    Aslan, Sinem
    Conze, Pierre-Henri
    Groza, Vladimir
    Duc Duy Pham
    Chatterjee, Soumick
    Ernst, Philipp
    Ozkan, Savas
    Baydar, Bora
    Lachinov, Dmitry
    Han, Shuo
    Pauli, Josef
    Isensee, Fabian
    Perkonigg, Matthias
    Sathish, Rachana
    Rajan, Ronnie
    Sheet, Debdoot
    Dovletov, Gurbandurdy
    Speck, Oliver
    Nurnberger, Andreas
    Maier-Hein, Klaus H.
    Akar, Gozde Bozdagi
    Unal, Gozde
    Dicle, Oguz
    Selver, M. Alper
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 69
  • [9] Enrichment of lung cancer computed tomography collections with AI-derived annotations
    Krishnaswamy, Deepa
    Bontempi, Dennis
    Thiriveedhi, Vamsi Krishna
    Punzo, Davide
    Clunie, David
    Bridge, Christopher P.
    Aerts, Hugo J. W. L.
    Kikinis, Ron
    Fedorov, Andrey
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [10] Landman B, 2015, PROC MICCAI MULTIATL, V5, P12, DOI 10.7303/syn3193805