Caerin 1.1 and 1.9 peptides halt B16 melanoma metastatic tumours via expanding cDC1 and reprogramming tumour macrophages

被引:2
作者
Fu, Quanlan [1 ]
Luo, Yuandong [1 ,2 ]
Li, Junjie [3 ,4 ]
Li, Hejie [5 ]
Liu, Xiaosong [1 ,2 ,3 ]
Chen, Zhu [6 ]
Ni, Guoying [2 ,3 ]
Wang, Tianfang [5 ,7 ]
机构
[1] Guizhou Univ, Med Sch, Guiyang 550000, Guizhou, Peoples R China
[2] First Peoples Hosp Foshan, Canc Res Inst, Foshan 528000, Guangdong, Peoples R China
[3] Guangdong Pharmaceut Univ, Affiliated Hosp 1, Sch Clin Med, Guangzhou 510080, Peoples R China
[4] Zhongao Biomed Technol Guangdong Co Ltd, Zhongshan 528403, Guangdong, Peoples R China
[5] Univ Sunshine Coast, Sch Sci Technol & Engn, Maroochydore Bc, Qld 4558, Australia
[6] Guiyang Hosp Stomatol, Guiyang 550004, Guizhou, Peoples R China
[7] Univ Sunshine Coast, Ctr Bioinnovat, Maroochydore Bc, Qld 4558, Australia
关键词
Caerin peptide; B16; cell; Melanoma; Macrophage; cDC1; CD4(+)CD8(+) T cell; Cell-cell communication; anti-CD47; antibody; Immunotherapy; T-CELLS; EXPRESSION; MIGRATION; GENES;
D O I
10.1186/s12967-024-05763-x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: Cancer immunotherapy, particularly immune checkpoint inhibitors (ICBs) such as anti-PD-1 antibodies, has revolutionised cancer treatment, although response rates vary among patients. Previous studies have demonstrated that caerin 1.1 and 1.9, host-defence peptides from the Australian tree frog, enhance the effectiveness of anti-PD-1 and therapeutic vaccines in a murine TC-1 model by activating tumour-associated macrophages intratumorally. Methods: We employed a murine B16 melanoma model to investigate the therapeutic potential of caerin 1.1 and 1.9 in combination with anti-CD47 and a therapeutic vaccine (triple therapy, TT). Tumour growth of caerin-injected primary tumours and distant metastatic tumours was assessed, and survival analysis conducted. Single-cell RNA sequencing (scRNAseq) of CD45(+) cells isolated from distant tumours was performed to elucidate changes in the tumour microenvironment induced by TT. Results: The TT treatment significantly reduced tumour volumes on the treated side compared to untreated and control groups, with notable effects observed by Day 21. Survival analysis indicated extended survival in mice receiving TT, both on the treated and distant sides. scRNAseq revealed a notable expansion of conventional type 1 dendritic cells (cDC1s) and CD4(+)CD8(+) T cells in the TT group. Tumour-associated macrophages in the TT group shifted toward a more immune-responsive M1 phenotype, with enhanced communication observed between cDC1s and CD8(+) and CD4(+)CD25(+) T cells. Additionally, TT downregulated M2-like macrophage marker genes, particularly in MHCIIhi and tissue-resident macrophages, suppressing Cd68 and Arg1 expression across all macrophage types. Differential gene expression analysis highlighted pathway alterations, including upregulation of oxidative phosphorylation and MYC target V1 in Arg1(hi) macrophages, and activation of pro-inflammatory pathways in MHCIIhi and tissue-resident macrophages. Conclusion: Our findings suggest that caerin 1.1 and 1.9, combined with immunotherapy, effectively modulate the tumour microenvironment in primary and secondary tumours, leading to reduced tumour growth and enhanced systemic immunity. Further investigation into these mechanisms could pave the way for improved combination therapies in advanced melanoma treatment.
引用
收藏
页数:18
相关论文
共 58 条
[1]   Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040 [J].
Arnold, Melina ;
Singh, Deependra ;
Laversanne, Mathieu ;
Vignat, Jerome ;
Vaccarella, Salvatore ;
Meheus, Filip ;
Cust, Anne E. ;
de Vries, Esther ;
Whiteman, David C. ;
Bray, Freddie .
JAMA DERMATOLOGY, 2022, 158 (05) :495-503
[2]   Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets [J].
Cassetta, Luca ;
Fragkogianni, Stamatina ;
Sims, Andrew H. ;
Swierczak, Agnieszka ;
Forrester, Lesley M. ;
Zhang, Hui ;
Soong, Daniel Y. H. ;
Cotechini, Tiziana ;
Anur, Pavane ;
Lin, Elaine Y. ;
Fidanza, Antonella ;
Lopez-Yrigoyen, Martha ;
Millar, Michael R. ;
Urman, Alexandra ;
Ai, Zhichao ;
Spellman, Paul T. ;
Hwang, E. Shelley ;
Dixon, J. Michael ;
Wiechmann, Lisa ;
Coussens, Lisa M. ;
Smith, Harriet O. ;
Pollard, Jeffrey W. .
CANCER CELL, 2019, 35 (04) :588-+
[3]   Caerin 1.1 and 1.9 Peptides from Australian Tree Frog Inhibit Antibiotic-Resistant Bacteria Growth in a Murine Skin Infection Model [J].
Chen, Shu ;
Zhang, Pingping ;
Xiao, Liyin ;
Liu, Ying ;
Wu, Kuihai ;
Ni, Guoying ;
Li, Hejie ;
Wang, Tianfang ;
Wu, Xiaolian ;
Chen, Guoqiang ;
Liu, Xiaosong .
MICROBIOLOGY SPECTRUM, 2021, 9 (01) :1-12
[4]   MLANA/MART1 and SlLV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma [J].
Du, JY ;
Miller, AJ ;
Widlund, HR ;
Horstmann, MA ;
Ramaswamy, S ;
Fisher, DE .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 163 (01) :333-343
[5]   Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors [J].
Erbel-Sieler, C ;
Dudley, C ;
Zhou, YD ;
Wu, XL ;
Estill, SJ ;
Han, T ;
Diaz-Arrastia, R ;
Brunskill, EW ;
Potter, SS ;
McKnight, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (37) :13648-13653
[6]   T-Regulatory Cells: Key Players in Tumor Immune Escape and Angiogenesis [J].
Facciabene, Andrea ;
Motz, Gregory T. ;
Coukos, George .
CANCER RESEARCH, 2012, 72 (09) :2162-2171
[7]   Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF [J].
Fang, D ;
Tsuji, Y ;
Setaluri, V .
NUCLEIC ACIDS RESEARCH, 2002, 30 (14) :3096-3106
[8]   Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species [J].
Guilliams, Martin ;
Dutertre, Charles-Antoine ;
Scott, Charlotte L. ;
McGovern, Naomi ;
Sichien, Dorine ;
Chakarov, Svetoslav ;
Van Gassen, Sofie ;
Chen, Jinmiao ;
Poidinger, Michael ;
De Prijck, Sofie ;
Tavernier, Simon J. ;
Low, Ivy ;
Irac, Sergio Erdal ;
Mattar, Citra Nurfarah ;
Sumatoh, Hermi Rizal ;
Low, Gillian Hui Ling ;
Chung, Tam John Kit ;
Chan, Dedrick Kok Hong ;
Tan, Ker Kan ;
Hon, Tony Lim Kiat ;
Fossum, Even ;
Bogen, Bjame ;
Choolani, Mahesh ;
Chan, Jerry Kok Yen ;
Larbi, Anis ;
Luche, Herve ;
Henri, Sandrine ;
Saeys, Yvan ;
Newell, Evan William ;
Lambrecht, Bart N. ;
Malissen, Bernard ;
Ginhoux, Florent .
IMMUNITY, 2016, 45 (03) :669-684
[9]   A gain-of-function mutation in the GRIK2 gene causes neurodevelopmental deficits [J].
Guzman, Yomayra F. ;
Ramsey, Keri ;
Stolz, Jacob R. ;
Craig, David W. ;
Huentelman, Mathew J. ;
Narayanan, Vinodh ;
Swanson, Geoffrey T. .
NEUROLOGY-GENETICS, 2017, 3 (01)
[10]   Inactivation of Pmel Alters Melanosome Shape But Has Only a Subtle Effect on Visible Pigmentation [J].
Hellstrom, Anders R. ;
Watt, Brenda ;
Fard, Shahrzad Shirazi ;
Tenza, Daniele ;
Mannstrom, Paula ;
Narfstroem, Kristina ;
Ekesten, Bjorn ;
Ito, Shosuke ;
Wakamatsu, Kazumasa ;
Larsson, Jimmy ;
Ulfendahl, Mats ;
Kullander, Klas ;
Raposo, Graca ;
Kerje, Susanne ;
Hallbook, Finn ;
Marks, Michael S. ;
Andersson, Leif .
PLOS GENETICS, 2011, 7 (09)