This paper considers a discrete-time single-server queueing system, with two classes of customers, named class 1 and class 2. We propose and analyze a novel threshold-based priority scheduling scheme that works as follows. Whenever the number of class-1 customers in the system exceeds a given thresholdm >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 0$$\end{document}, the server of the system gives priority to class-1 customers; otherwise, it gives priority to class-2 customers. Consequently, for m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document}, the system is equivalent to a classical priority queue with absolute priority for class-1 customers, whereby the (mean) delay of class-1 customers is lowered as much as possible at the expense of longer (mean) delays for class-2 customers. On the other hand, for m ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\rightarrow \infty $$\end{document}, the system is equivalent to a priority queue with absolute priority for class-2 customers, with the opposite effect on the class-specific (mean) delays. By choosing 0