Analysis of a threshold-based priority queue

被引:0
作者
Bruneel, Herwig [1 ]
机构
[1] Ghent Univ UGent, Dept Telecommun & Informat Proc, SMACS Res Grp, Ghent, Belgium
关键词
Priority queues; Discrete-time; Priority threshold; Functional equation analysis; SCHEDULING DISCIPLINE; PERFORMANCE ANALYSIS; LAW;
D O I
10.1007/s11134-025-09936-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers a discrete-time single-server queueing system, with two classes of customers, named class 1 and class 2. We propose and analyze a novel threshold-based priority scheduling scheme that works as follows. Whenever the number of class-1 customers in the system exceeds a given thresholdm >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 0$$\end{document}, the server of the system gives priority to class-1 customers; otherwise, it gives priority to class-2 customers. Consequently, for m=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0$$\end{document}, the system is equivalent to a classical priority queue with absolute priority for class-1 customers, whereby the (mean) delay of class-1 customers is lowered as much as possible at the expense of longer (mean) delays for class-2 customers. On the other hand, for m ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\rightarrow \infty $$\end{document}, the system is equivalent to a priority queue with absolute priority for class-2 customers, with the opposite effect on the class-specific (mean) delays. By choosing 0
引用
收藏
页数:45
相关论文
共 25 条
[1]  
Ablowitz MJ., 2003, Complex Variables: Introduction and Applications, V2
[2]   A PSEUDO-CONSERVATION LAW FOR SERVICE SYSTEMS WITH A POLLING TABLE [J].
BOXMA, OJ ;
GROENENDIJK, WP ;
WESTSTRATE, JA .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1990, 38 (10) :1865-1870
[3]  
Bruneel H., 1993, Discrete-TIme Models for Communication Systems Including ATM
[4]   Delay analysis of a two-class priority queue with external arrivals and correlated arrivals from another node [J].
De Clercq, Sofian ;
Walraevens, Joris .
ANNALS OF OPERATIONS RESEARCH, 2020, 293 (01) :57-72
[5]   Analysis of a discrete-time queue with time-limited overtake priority [J].
De Clercq, Sofian ;
Steyaert, Bart ;
Wittevrongel, Sabine ;
Bruneel, Herwig .
ANNALS OF OPERATIONS RESEARCH, 2016, 238 (1-2) :69-97
[6]   FRAME-BOUND PRIORITY SCHEDULING IN DISCRETE-TIME QUEUEING SYSTEMS [J].
De Clercq, Sofian ;
De Turck, Koen ;
Steyaert, Bart ;
Bruneel, Herwig .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (03) :767-788
[7]  
Deng Y., 2001, J. Appl. Prob., V38, P263
[8]   A note on the discretization of Little's result [J].
Fiems, D ;
Bruneel, H .
OPERATIONS RESEARCH LETTERS, 2002, 30 (01) :17-18
[9]   Queueing Analysis of a Threshold Based Priority Scheme For ATM Networks [J].
Lee, Duan-Shin ;
Sengupta, Bhaskar .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1993, 1 (06) :709-717
[10]   Little's Law as Viewed on Its 50th Anniversary [J].
Little, John D. C. .
OPERATIONS RESEARCH, 2011, 59 (03) :536-549