Artificial Intelligence Advancements in Cardiomyopathies: Implications for Diagnosis and Management of Arrhythmogenic Cardiomyopathy

被引:1
作者
Salavati, Arman [1 ,2 ]
van der Wilt, C. Nina [1 ,2 ,3 ]
Calore, Martina [4 ,5 ]
van Es, Rene [1 ]
Rampazzo, Alessandra [4 ]
van der Harst, Pim [1 ,2 ]
van Steenbeek, Frank G. [1 ,3 ,6 ]
van Tintelen, J. Peter [2 ,7 ]
Harakalova, Magdalena [1 ,2 ,3 ]
te Riele, Anneline S. J. M. [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Univ Utrecht, Div Heart Lungs, Dept Cardiol, Utrecht, Netherlands
[2] European Network Rare, Low Prevalence & Complex Dis, Heart ERN GUARD Heart, Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Univ Utrecht, Regenerat Med Ctr Utrecht, Utrecht, Netherlands
[4] Univ Padua, Dept Biol, Padua, Italy
[5] Maastricht Univ, Sch Cardiovascular Dis CARIM, Fac Hlth, Med Life Sci FHML, Maastricht, Netherlands
[6] Univ Utrecht, Dept Clin Sci, Fac Vet Med, Utrecht, Netherlands
[7] Univ Med Ctr Utrecht, Univ Utrecht, Dept Genet, Utrecht, Netherlands
关键词
Artificial intelligence; ARVC; ACM; Cardiomyopathy; Risk prediction; Machine learning; Deep learning; TERM-FOLLOW-UP; COMPUTER; QRS;
D O I
10.1007/s11897-024-00688-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of Review This review aims to explore the emerging potential of artificial intelligence (AI) in refining risk prediction, clinical diagnosis, and treatment stratification for cardiomyopathies, with a specific emphasis on arrhythmogenic cardiomyopathy (ACM). Recent Findings Recent developments highlight the capacity of AI to construct sophisticated models that accurately distinguish affected from non-affected cardiomyopathy patients. These AI-driven approaches not only offer precision in risk prediction and diagnostics but also enable early identification of individuals at high risk of developing cardiomyopathy, even before symptoms occur. These models have the potential to utilise diverse clinical input datasets such as electrocardiogram recordings, cardiac imaging, and other multi-modal genetic and omics datasets. Summary Despite their current underrepresentation in literature, ACM diagnosis and risk prediction are expected to greatly benefit from AI computational capabilities, as has been the case for other cardiomyopathies. As AI-based models improve, larger and more complicated datasets can be combined. These more complex integrated datasets with larger sample sizes will contribute to further pathophysiological insights, better disease recognition, risk prediction, and improved patient outcomes.
引用
收藏
页数:11
相关论文
共 83 条
[1]  
Ababio Y., 2023, Am J Med Open, V10, P100038, DOI [10.1016/j.ajmo.2023.100038, DOI 10.1016/J.AJMO.2023.100038]
[2]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[3]   ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants [J].
Alirezaie, Najmeh ;
Kernohan, Kristin D. ;
Hartley, Taila ;
Majewski, Jacek ;
Hocking, Toby Dylan .
AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 103 (04) :474-483
[4]   Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI [J].
Alis, D. ;
Guler, A. ;
Yergin, M. ;
Asmakutlu, O. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (03) :137-146
[5]   2023 ESC Guidelines for the management of cardiomyopathies Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC) [J].
Arbelo, Elena ;
Protonotarios, Alexandros ;
Gimeno, Juan R. ;
Arbustini, Eloisa ;
Barriales-Villa, Roberto ;
Basso, Cristina ;
Bezzina, Connie R. ;
Biagini, Elena ;
Blom, Nico A. ;
de Boer, Rudolf A. ;
De Winter, Tim ;
Elliott, Perry M. ;
Flather, Marcus ;
Garcia-Pavia, Pablo ;
Haugaa, Kristina H. ;
Ingles, Jodie ;
Jurcut, Ruxandra Oana ;
Klaassen, Sabine ;
Limongelli, Giuseppe ;
Loeys, Bart ;
Mogensen, Jens ;
Olivotto, Iacopo ;
Pantazis, Antonis ;
Sharma, Sanjay ;
Van Tintelen, J. Peter ;
Ware, James S. ;
Kaski, Juan Pablo .
EUROPEAN HEART JOURNAL, 2023, 44 (37) :3503-3626
[6]   The Role of AI in Characterizing the DCM Phenotype [J].
Asher, Clint ;
Puyol-Anton, Esther ;
Rizvi, Maleeha ;
Ruijsink, Bram ;
Chiribiri, Amedeo ;
Razavi, Reza ;
Carr-White, Gerry .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
[7]  
Ashish S, 2023, JACC: Adv., V2
[8]   Applications of artificial intelligence and machine learning in heart failure [J].
Averbuch, Tauben ;
Sullivan, Kristen ;
Sauer, Andrew ;
Mamas, Mamas A. ;
Voors, Adriaan A. ;
Gale, Chris P. ;
Metra, Marco ;
Ravindra, Neal ;
Van Spall, Harriette G. C. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (02) :311-322
[9]   Evolution of P-wave indices during long-term follow-up as markers of atrial substrate progression in arrhythmogenic right ventricular cardiomyopathy [J].
Baturova, Maria A. ;
Svensson, Anneli ;
Aneq, Meriam Astrom ;
Svendsen, Jesper H. ;
Risum, Niels ;
Sherina, Valeriia ;
Bundgaard, Henning ;
Meurling, Carl ;
Lundin, Catarina ;
Carlson, Jonas ;
Platonov, Pyotr G. .
EUROPACE, 2021, 23 :I29-I37
[10]   Use of machine learning to classify high-risk variants of uncertain significance in lamin A/C cardiac disease [J].
Bennett, Jeffrey S. ;
Gordon, David M. ;
Majumdar, Uddalak ;
Lawrence, Patrick J. ;
Matos-Nieves, Adrianna ;
Myers, Katherine ;
Kamp, Anna N. ;
Leonard, Julie C. ;
McBride, Kim L. ;
White, Peter ;
Garg, Vidu .
HEART RHYTHM, 2022, 19 (04) :676-685