Multiplicity of weak solutions in double phase Kirchhoff elliptic problems with Neumann conditions

被引:0
作者
Ahmed, Ahmed [1 ]
Vall, Mohamed Saad Bouh Elemine [2 ]
Boulaaras, Salah [3 ]
机构
[1] Univ Nouakchott, Fac Sci & Technol, Dept Math & Comp Sci, Nouakchott, Mauritania
[2] Univ Nouakchott, Profess Univ Inst, Dept Appl Math & Ind Engn, Nouakchott, Mauritania
[3] Qassim Univ, Coll Sci, Dept Math, Buraydah, Saudi Arabia
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
关键词
Double phase problems; Multiple solutions; Kirchhoff function; Weak solutions to PDEs; Nonlinear equations; VARIABLE EXPONENT; EXISTENCE; EQUATIONS; INEQUALITIES; REGULARITY; CONVECTION; OPERATORS; FLOW;
D O I
10.1186/s13661-025-02043-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of weak solutions for a class of double phase Kirchhoff elliptic problems under Neumann boundary conditions. The problem is characterized by the equation {-K1(integral Lambda A(y,del zeta)dy)diva(y,del zeta)-K2(integral Lambda B(y,del zeta)dy)divb(y,del zeta)+K1(integral Lambda 1 nu 1(y)|zeta|nu 1(y)dy)|zeta|nu 1(y)-2 zeta+K2(integral Lambda 1 nu 2(y)|zeta|nu 2(y)dy)|zeta|nu 2(y)-2 zeta=theta(y,zeta)in Lambda a(y,del zeta)& sdot;n ->=b(y,del zeta)& sdot;n ->=0,on partial derivative Lambda,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left \{ \textstyle\begin{array}{l@{\quad}l} -K_{1}\left (\int _{\Lambda} A(y, \nabla \zeta ) \mathrm{d} y\right ) \operatorname{div} a(y, \nabla \zeta ) -K_{2}\left (\int _{\Lambda} B(y, \nabla \zeta ) \mathrm{d} y\right ) \operatorname{div} b(y, \nabla \zeta ) \\ +K_{1}\left (\int _{\Lambda} \frac{1}{\nu _{1}(y)}| \zeta |<^>{\nu _{1}(y)} \mathrm{d} y\right )| \zeta |<^>{\nu _{1}(y)-2} \zeta \\ \quad{} +K_{2}\left ( \int _{\Lambda} \frac{1}{\nu _{2}(y)}| \zeta |<^>{\nu _{2}(y)} \mathrm{d} y\right )| \zeta |<^>{\nu _{2}(y)-2} \zeta =\theta (y, \zeta ) &\text{in } \Lambda \\ a(y, \nabla \zeta )\cdot \vec{n}=b(y, \nabla \zeta )\cdot \vec{n}=0, & \text{on } \partial \Lambda ,\end{array}\displaystyle \right . $$\end{document} where K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{1} $\end{document} and K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{2} $\end{document} are Kirchhoff-type functions, and the nonlinearities A(y,del zeta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(y, \nabla \zeta ) $\end{document} and B(y,del zeta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B(y, \nabla \zeta ) $\end{document} exhibit double phase behavior. Employing a theorem proposed by B. Ricceri, which extends a more general variational principle, we confirm the existence of countless weak solutions for this complex system. Additionally, we present examples that illustrate the applicability of the theoretical results to specific cases. The findings contribute to the broader understanding of non-standard growth conditions and their implications in the study of Kirchhoff-type elliptic problems.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A singularity as a break point for the multiplicity of solutions to quasilinear elliptic problems
    Lopez-Martinez, Salvador
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 1351 - 1382
  • [32] Multiplicity of Solutions for a Kirchhoff Multi-Phase Problem with Variable Exponents
    Vetro, Francesca
    ACTA APPLICANDAE MATHEMATICAE, 2025, 195 (01)
  • [33] Existence and multiplicity results for elliptic problems with p(.)-Growth conditions
    Boureanu, Maria-Magdalena
    Udrea, Diana Nicoleta
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (04) : 1829 - 1844
  • [34] INFINITELY MANY SOLUTIONS FOR KIRCHHOFF TYPE PROBLEMS WITH NONLINEAR NEUMANN BOUNDARY CONDITIONS
    Wang, Wei-Bing
    Tang, Wei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [35] Multiplicity of solutions for a class of Kirchhoff type problems
    Xiao-ming He
    Wen-ming Zou
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 387 - 394
  • [36] Multiplicity of solutions for a class of Kirchhoff type problems
    He, Xiao-ming
    Zou, Wen-ming
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (03): : 387 - 394
  • [37] MULTIPLICITY RESULTS OF SOLUTIONS TO THE DOUBLE PHASE ANISOTROPIC VARIATIONAL PROBLEMS INVOLVING VARIABLE EXPONENT
    Cen, Jinxia
    Kim, Seong Jin
    Kim, Yun-Ho
    Zeng, Shengda
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2023, 28 (5-6) : 467 - 504
  • [38] MULTIPLICITY OF SOLUTIONS TO FOURTH-ORDER SUPERLINEAR ELLIPTIC PROBLEMS UNDER NAVIER CONDITIONS
    Da Silva, Edcarlos D.
    Cavalcante, Thiago Rodrigues
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [39] Anisotropic double-phase problems with indefinite potential: multiplicity of solutions
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [40] Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems
    Ferrara, Massimiliano
    Khademloo, Somaye
    Heidarkhani, Shapour
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 316 - 325