Multiplicity of weak solutions in double phase Kirchhoff elliptic problems with Neumann conditions

被引:0
作者
Ahmed, Ahmed [1 ]
Vall, Mohamed Saad Bouh Elemine [2 ]
Boulaaras, Salah [3 ]
机构
[1] Univ Nouakchott, Fac Sci & Technol, Dept Math & Comp Sci, Nouakchott, Mauritania
[2] Univ Nouakchott, Profess Univ Inst, Dept Appl Math & Ind Engn, Nouakchott, Mauritania
[3] Qassim Univ, Coll Sci, Dept Math, Buraydah, Saudi Arabia
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
关键词
Double phase problems; Multiple solutions; Kirchhoff function; Weak solutions to PDEs; Nonlinear equations; VARIABLE EXPONENT; EXISTENCE; EQUATIONS; INEQUALITIES; REGULARITY; CONVECTION; OPERATORS; FLOW;
D O I
10.1186/s13661-025-02043-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of weak solutions for a class of double phase Kirchhoff elliptic problems under Neumann boundary conditions. The problem is characterized by the equation {-K1(integral Lambda A(y,del zeta)dy)diva(y,del zeta)-K2(integral Lambda B(y,del zeta)dy)divb(y,del zeta)+K1(integral Lambda 1 nu 1(y)|zeta|nu 1(y)dy)|zeta|nu 1(y)-2 zeta+K2(integral Lambda 1 nu 2(y)|zeta|nu 2(y)dy)|zeta|nu 2(y)-2 zeta=theta(y,zeta)in Lambda a(y,del zeta)& sdot;n ->=b(y,del zeta)& sdot;n ->=0,on partial derivative Lambda,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left \{ \textstyle\begin{array}{l@{\quad}l} -K_{1}\left (\int _{\Lambda} A(y, \nabla \zeta ) \mathrm{d} y\right ) \operatorname{div} a(y, \nabla \zeta ) -K_{2}\left (\int _{\Lambda} B(y, \nabla \zeta ) \mathrm{d} y\right ) \operatorname{div} b(y, \nabla \zeta ) \\ +K_{1}\left (\int _{\Lambda} \frac{1}{\nu _{1}(y)}| \zeta |<^>{\nu _{1}(y)} \mathrm{d} y\right )| \zeta |<^>{\nu _{1}(y)-2} \zeta \\ \quad{} +K_{2}\left ( \int _{\Lambda} \frac{1}{\nu _{2}(y)}| \zeta |<^>{\nu _{2}(y)} \mathrm{d} y\right )| \zeta |<^>{\nu _{2}(y)-2} \zeta =\theta (y, \zeta ) &\text{in } \Lambda \\ a(y, \nabla \zeta )\cdot \vec{n}=b(y, \nabla \zeta )\cdot \vec{n}=0, & \text{on } \partial \Lambda ,\end{array}\displaystyle \right . $$\end{document} where K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{1} $\end{document} and K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{2} $\end{document} are Kirchhoff-type functions, and the nonlinearities A(y,del zeta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(y, \nabla \zeta ) $\end{document} and B(y,del zeta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B(y, \nabla \zeta ) $\end{document} exhibit double phase behavior. Employing a theorem proposed by B. Ricceri, which extends a more general variational principle, we confirm the existence of countless weak solutions for this complex system. Additionally, we present examples that illustrate the applicability of the theoretical results to specific cases. The findings contribute to the broader understanding of non-standard growth conditions and their implications in the study of Kirchhoff-type elliptic problems.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] EXISTENCE OF WEAK SOLUTIONS FOR ELLIPTIC DIRICHLET PROBLEMS WITH VARIABLE EXPONENT
    Kim, Sungchol
    Ri, Dukman
    MATHEMATICA BOHEMICA, 2023, 148 (03): : 283 - 302
  • [22] EXISTENCE OF WEAK SOLUTIONS FOR ELLIPTIC DIRICHLET PROBLEMS WITH VARIABLE EXPONENT
    Kim, Sungchol
    Ri, Dukman
    MATHEMATICA BOHEMICA, 2022, : 283 - 302
  • [23] Multiplicity results for elliptic Kirchhoff-type problems
    Baraket, Sami
    Bisci, Giovanni Molica
    ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (01) : 85 - 93
  • [24] Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions
    Bonheure, Denis
    Grumiau, Christopher
    Troestler, Christophe
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 236 - 273
  • [25] Existence and Multiplicity Results for Kirchhoff-Type Problems on a Double-Phase Setting
    Fiscella, Alessio
    Pinamonti, Andrea
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [26] MULTIPLICITY OF SOLUTIONS FOR NEUMANN PROBLEMS WITH AN INDEFINITE AND UNBOUNDED POTENTIAL
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 1985 - 1999
  • [27] Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting
    Fiscella, Alessio
    Marino, Greta
    Pinamonti, Andrea
    Verzellesi, Simone
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (01): : 205 - 236
  • [28] Existence and Multiplicity of Solutions for a Class of Anisotropic Double Phase Problems
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [29] MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC BOUNDARY VALUE PROBLEMS
    Ye, Yiwei
    Tang, Chun-Lei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [30] Multiplicity of positive solutions for singular elliptic problems
    Orpel, Aleksandra
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2396 - 2412