Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations

被引:0
作者
Romero, Imelda [1 ,2 ]
Nys, Jannes [1 ,2 ]
Carleo, Giuseppe [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Ctr Quantum Sci & Engn, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
MANY-BODY PROBLEM; MOTT INSULATOR; QUANTUM; TRANSITION; MODEL; GAS;
D O I
10.1038/s42005-025-01955-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neural networks have shown to be a powerful tool to represent the ground state of quantum many-body systems, including fermionic systems. However, efficiently integrating lattice symmetries into neural representations remains a significant challenge. In this work, we introduce a framework for embedding lattice symmetries in fermionic wavefunctions and demonstrate its ability to target both ground states and low-lying excitations. Using group-equivariant neural backflow transformations, we study the t-V model on a square lattice away from half-filling. Our symmetry-aware backflow significantly improves ground-state energies and yields accurate low-energy excitations for lattices up to 10 x 10. We also compute accurate two-point density-correlation functions and the structure factor to identify phase transitions and critical points. These findings introduce a symmetry-aware framework important for studying quantum materials and phase transitions.
引用
收藏
页数:10
相关论文
共 85 条
[1]  
Avella A., 2013, Strongly correlated systems: numerical methods, V176
[2]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[3]   NetKet: A machine learning toolkit for many-body quantum systems [J].
Carleo, Giuseppe ;
Choo, Kenny ;
Hofmann, Damian ;
Smith, James E. T. ;
Westerhout, Tom ;
Alet, Fabien ;
Davis, Emily J. ;
Efthymiou, Stavros ;
Glasser, Ivan ;
Lin, Sheng-Hsuan ;
Mauri, Marta ;
Mazzola, Guglielmo ;
Mendl, Christian B. ;
van Nieuwenburg, Evert ;
O'Reilly, Ossian ;
Theveniaut, Hugo ;
Torlai, Giacomo ;
Vicentini, Filippo ;
Wietek, Alexander .
SOFTWAREX, 2019, 10
[4]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[5]   Equivalence of restricted Boltzmann machines and tensor network states [J].
Chen, Jing ;
Cheng, Song ;
Xie, Haidong ;
Wang, Lei ;
Xiang, Tao .
PHYSICAL REVIEW B, 2018, 97 (08)
[6]  
Chen K.-T., 2010, Spinless fermions with repulsive interactions
[7]   Fermionic neural-network states for ab-initio electronic structure [J].
Choo, Kenny ;
Mezzacapo, Antonio ;
Carleo, Giuseppe .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Symmetries and Many-Body Excitations with Neural-Network Quantum States [J].
Choo, Kenny ;
Carleo, Giuseppe ;
Regnault, Nicolas ;
Neupert, Titus .
PHYSICAL REVIEW LETTERS, 2018, 121 (16)
[9]  
Cohen TS, 2016, PR MACH LEARN RES, V48
[10]   Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states [J].
Corboz, Philippe ;
Orus, Roman ;
Bauer, Bela ;
Vidal, Guifre .
PHYSICAL REVIEW B, 2010, 81 (16)