Asymptotics of Helmholtz-Kirchhoff Point-Vortices in the Phase Space

被引:0
作者
Kim, Chanwoo [1 ]
Nguyen, Trinh T. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE FLUID-MECHANICS; BOLTZMANN-EQUATION; INVISCID LIMIT; KINETIC-EQUATIONS; DYNAMICAL LIMIT; VORTEX MERGER; DIMENSIONS; CONVERGENCE; BOUNDARY;
D O I
10.1007/s00220-025-05264-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz-Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier-Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.
引用
收藏
页数:49
相关论文
共 63 条
[42]   From the Boltzmann equations to the equations of incompressible fluid mechanics, II [J].
Lions, PL ;
Masmoudi, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (03) :195-211
[43]  
Lions PL, 2001, ARCH RATION MECH AN, V158, P173, DOI 10.1007/s002050100143
[44]  
Liu TP, 2011, BULL INST MATH ACAD, V6, P115
[45]   ON THE VANISHING VISCOSITY LIMIT FOR 2-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH SINGULAR INITIAL DATA [J].
MARCHIORO, C .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (06) :463-470
[46]   On the inviscid limit for a fluid with a concentrated vorticity [J].
Marchioro, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (01) :53-65
[47]  
MARCHIORO C, 1994, MATH THEORY INCOMPRE
[48]   From the Boltzmann equation to the Stokes-Fourier system in a bounded domain [J].
Masmoudi, N ;
Saint-Raymond, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (09) :1263-1293
[49]   SYMMETRIC VORTEX MERGER IN 2 DIMENSIONS - CAUSES AND CONDITIONS [J].
MELANDER, MV ;
ZABUSKY, NJ ;
MCWILLIAMS, JC .
JOURNAL OF FLUID MECHANICS, 1988, 195 :303-340
[50]   Physics of vortex merging [J].
Meunier, P ;
Le Dizès, S ;
Leweke, T .
COMPTES RENDUS PHYSIQUE, 2005, 6 (4-5) :431-450