Asymptotics of Helmholtz-Kirchhoff Point-Vortices in the Phase Space

被引:0
作者
Kim, Chanwoo [1 ]
Nguyen, Trinh T. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE FLUID-MECHANICS; BOLTZMANN-EQUATION; INVISCID LIMIT; KINETIC-EQUATIONS; DYNAMICAL LIMIT; VORTEX MERGER; DIMENSIONS; CONVERGENCE; BOUNDARY;
D O I
10.1007/s00220-025-05264-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rigorous derivation of point vortex systems from kinetic equations has been a challenging open problem, due to singular layers in the inviscid limit, giving a large velocity gradient in the Boltzmann equations. In this paper, we derive the Helmholtz-Kirchhoff point-vortex system from the hydrodynamic limits of the Boltzmann equations. We construct Boltzmann solutions by the Hilbert-type expansion associated to the point vortices solutions of the 2D Navier-Stokes equations. We give a precise pointwise estimate for the solution of the Boltzmann equations with small Strouhal number and Knudsen number.
引用
收藏
页数:49
相关论文
共 63 条
[1]   Stability for Rayleigh-Benard Convective Solutions of the Boltzmann Equation [J].
Arkeryd, L. ;
Esposito, R. ;
Marra, R. ;
Nouri, A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :125-187
[2]   GHOST EFFECT BY CURVATURE IN PLANAR COUETTE FLOW [J].
Arkeyrd, Leif ;
Esposito, Raffaele ;
Marra, Rossana ;
Nouri, Anne .
KINETIC AND RELATED MODELS, 2011, 4 (01) :109-138
[3]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[4]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[5]   The acoustic limit for the Boltzmann equation [J].
Bardos, C ;
Golse, F ;
Levermore, CD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 153 (03) :177-204
[6]   THE INVISCID LIMIT FOR THE 2D NAVIER-STOKES EQUATIONS IN BOUNDED DOMAINS [J].
Bardos, Claude W. ;
Nguyen, Trinh T. ;
Nguyen, Toan T. ;
Titi, Edriss S. .
KINETIC AND RELATED MODELS, 2022, 15 (03) :317-340
[7]   FLUID-DYNAMICAL LIMIT OF A NON-LINEAR MODEL BOLTZMANN-EQUATION [J].
CAFLISCH, RE ;
PAPANICOLAOU, GC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (05) :589-616
[8]   Passage from the Boltzmann equation with diffuse boundary to the incompressible Euler equation with heat convection [J].
Cao, Yunbai ;
Jang, Juhi ;
Kim, Chanwoo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 366 :565-644
[9]  
Chemin JY, 1996, COMMUN PART DIFF EQ, V21, P1771
[10]  
Constantin P, 1996, INDIANA U MATH J, V45, P67