Application of machine learning and deep learning techniques on reverse vaccinology – a systematic literature review

被引:0
|
作者
Alashwal, Hany [1 ]
Kochunni, Nishi Palakkal [1 ]
Hayawi, Kadhim [2 ]
机构
[1] Big Data Analytics Center, College of Information Technology, United Arab Emirates University, P.O. Box 15551, Al Ain
[2] College of Interdisciplinary Studies, Computational Systems, Zayed University, P.O. Box 144534, Abu Dhabi
关键词
Deep learning; Machine learning; Reverse vaccinology; Vaccine candidate prediction;
D O I
10.1007/s00500-025-10480-8
中图分类号
学科分类号
摘要
Reverse vaccinology (RV) is recognized as a productive method of vaccine discovery since it may be used to create vaccines for a variety of infectious pathogens. With the potential for machine learning (ML) algorithms to enable quick and precise predictions of vaccine candidates against new infections, RV is of particular relevance. Despite the fact that ML has been used successfully in the past, Deep learning (DL) model-based RV approaches have not been used widely. DL techniques are known to provide more complicated models and better performance for AI applications. This paper supports and reviews the roles of machine learning and Deep Learning in predicting potential vaccine candidates and discovery processes. Our study involved a systematic evaluation of selected publications, identified through a combination of prior knowledge and keyword searches across freely accessible databases. A meticulous screening process, considering contextual relevance, abstract quality, methodology, and full-text content, was employed. The literature review, conducted with a rigorous methodology, encompasses a thorough analysis of articles focusing on machine learning and deep learning techniques. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
引用
收藏
页码:391 / 403
页数:12
相关论文
共 50 条
  • [1] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [2] The application of traditional machine learning and deep learning techniques in mammography: a review
    Gao, Ying'e
    Lin, Jingjing
    Zhou, Yuzhuo
    Lin, Rongjin
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [3] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71
  • [4] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1155 - 1173
  • [5] A Systematic Literature Review on Machine Learning and Deep Learning Methods for Semantic Segmentation
    Sohail, Ali
    Nawaz, Naeem A. A.
    Shah, Asghar Ali
    Rasheed, Saim
    Ilyas, Sheeba
    Ehsan, Muhammad Khurram
    IEEE ACCESS, 2022, 10 : 134557 - 134570
  • [6] Machine/Deep Learning for Software Engineering: A Systematic Literature Review
    Wang, Simin
    Huang, Liguo
    Gao, Amiao
    Ge, Jidong
    Zhang, Tengfei
    Feng, Haitao
    Satyarth, Ishna
    Li, Ming
    Zhang, He
    Ng, Vincent
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (03) : 1188 - 1231
  • [7] Machine learning techniques in chemostratigraphy: A systematic literature review
    Garcia, Luciano Garim
    Ramos, Gabriel de Oliveira
    Teixeira, Jose Manuel Marques
    da Silveira, Ariane Santos
    Cardoso Jr, Marcio
    de Oliveira, Rita Gausina
    Rigo, Sandro Jose
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243
  • [8] Machine learning and deep learning techniques for the analysis of heart disease: a systematic literature review, open challenges and future directions
    Bhushan, Megha
    Pandit, Akkshat
    Garg, Ayush
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 14035 - 14086
  • [9] Systematic Review of Machine Learning and Deep Learning Techniques for Spatiotemporal Air Quality Prediction
    Agbehadji, Israel Edem
    Obagbuwa, Ibidun Christiana
    ATMOSPHERE, 2024, 15 (11)
  • [10] AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques
    Lewis, Jovita Relasha
    Pathan, Sameena
    Kumar, Preetham
    Dias, Cifha Crecil
    IEEE ACCESS, 2024, 12 : 163764 - 163786