Experimental study and finite element analysis on interfacial mechanical behaviors of steel-UHPC composite structures in acidic environments

被引:0
|
作者
Lin, Youzhu [1 ]
Zhu, Shuai [1 ]
Mao, Xinya [1 ]
Sun, Ming [2 ,3 ]
Yan, Jiachuan [2 ,3 ]
机构
[1] Northeast Forestry Univ, Sch Civil Engn & Transportat, Harbin 150040, Peoples R China
[2] Harbin Inst Technol, Key Lab Struct Dynam Behav & Control, Minist Educ, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Key Lab Smart Prevent Mitigat Civil Engn Disasters, Minist Ind & Informat Technol, Harbin 150090, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Steel-concrete-steel composite structures; UHPC; Acidic environment; Concrete acid corrosion damage constitutive; model; Load transfer mechanism; Theoretical models; SCS SANDWICH BEAMS; SHEAR CONNECTORS; PLATES;
D O I
10.1016/j.conbuildmat.2025.140601
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Steel-concrete-steel (SCS) composite structures with ultra-high performance concrete (UHPC) are recognized for their durability and versatility, particularly in harsh environments such as acidic conditions. This study investigates the mechanical behavior at the steel-UHPC interface in SCS systems, focusing on the performance of studs as shear connectors under acidic exposure. Push-out tests were conducted to analyze mechanical performance and failure mechanisms at the interface. The results show that UHPC enhances mechanical performance by 65.4 %, improves ductility by 97.6 %, and significantly reduces crack propagation, offering greater resistance to acidic conditions compared to ordinary concrete. These findings highlight the critical role of UHPC in strengthening the interface and improving durability in aggressive environments. To extend the experimental findings, finite element (FE) analysis was used to develop theoretical models for interfacial shear capacity. A constitutive model integrating machine learning and elastoplastic damage mechanics was introduced to simulate the degradation of UHPC under acidic conditions with high accuracy. The FE model was validated using experimental data, providing detailed insights into the load transfer mechanisms at the interface. By combining experimental and theoretical approaches, this study develops a predictive model for interfacial shear capacity, offering practical guidance for designing durable and reliable SCS systems in demanding environments.
引用
收藏
页数:21
相关论文
共 30 条
  • [1] Finite Element Analysis of Group Studs in Steel-UHPC Composite Slab
    Hu, Wenxu
    Chen, Baochun
    Li, Cong
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2023, 310 : 285 - 297
  • [2] Finite element analysis on shear behavior of headed studs in steel-UHPC composite slab
    Hu, Wenxu
    Li, Cong
    Chen, Baochun
    Liu, Yongjian
    STRUCTURES, 2023, 52 : 464 - 475
  • [3] Experiment and finite element analysis of bending behavior of high strength steel-UHPC composite beams
    Tong, Lewei
    Chen, Luhua
    Wang, Xiaoqing
    Zhu, Jia
    Shao, Xiaodong
    Zhao, Zheng
    ENGINEERING STRUCTURES, 2022, 266
  • [4] Experimental and Numerical Study on Flexural Behaviors of Steel-UHPC Composite Beams under Hogging Moment
    Mao, Min
    Yin, Cong-Lin
    Shen, Shi-Yu
    Wan, Ying
    KSCE JOURNAL OF CIVIL ENGINEERING, 2024, 28 (06) : 2344 - 2354
  • [5] Experimental and Numerical Study on Flexural Behaviors of Steel-UHPC Composite Beams under Hogging Moment
    Min Mao
    Cong-Lin Yin
    Shi-Yu Shen
    Ying Wan
    KSCE Journal of Civil Engineering, 2024, 28 : 2344 - 2354
  • [6] Experimental and analytical study on the mechanical response of shield tunnel segmental linings strengthened by a steel-UHPC composite
    Chen, Ren-Peng
    Fan, Meng
    Cheng, Hong-Zhan
    Wu, Huai-Na
    Zhang, Yang
    Ruan, Shi-Qiang
    Gao, Bin-Yong
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 150
  • [7] Experimental study on flexural behavior of hollow steel-UHPC composite bridge deck
    Zou, Yang
    Zheng, Kaidi
    Zhou, Zhixiang
    Zhang, Zhongya
    Guo, Jincen
    Jiang, Jinlong
    ENGINEERING STRUCTURES, 2023, 274
  • [8] Experimental study on grouped stud shear connectors in precast steel-UHPC composite bridge
    Ding, Jingnan
    Zhu, Jinsong
    Kang, Jingfu
    Wang, Xiuce
    ENGINEERING STRUCTURES, 2021, 242
  • [9] Experimental study, finite element simulation and theoretical analysis on failure mechanism of steel-concrete-steel (SCS) composite deep beams with UHPC
    Lin, Youzhu
    Yan, Jiachuan
    Wang, Zefang
    Zou, Chaoying
    ENGINEERING STRUCTURES, 2023, 286
  • [10] Parametric Experimental Study of Ultra-Short Stud Connections for Lightweight Steel-UHPC Composite Bridges
    Xu, Qizhi
    Sebastian, Wendel
    Lu, Kaiwei
    Yao, Yiming
    Wang, Jingquan
    JOURNAL OF BRIDGE ENGINEERING, 2022, 27 (02)