Holomorphic Legendrian Curves in Convex Domains

被引:0
作者
Svetina, Andrej [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska ul 19, Ljubljana 1000, Slovenia
关键词
Holomorphic Legendrian curve; Convex domain; Complete Legendrian embedding; SURFACES;
D O I
10.1007/s12220-024-01872-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several results on approximation and interpolation of holomorphic Legendrian curves in convex domains in C2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}<^>{2n+1}$$\end{document}, n >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 2$$\end{document}, with the standard contact structure. Namely, we show that such a curve, defined on a compact bordered Riemann surface M, whose image lies in the interior of a convex domain D subset of C2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {D}\subset \mathbb {C}<^>{2n+1}$$\end{document}, may be approximated uniformly on compacts in the interior IntM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M$$\end{document} by holomorphic Legendrian curves IntM -> D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M \rightarrow \mathscr {D}$$\end{document} such that the approximants are proper, complete, agree with the starting curve on a given finite set in IntM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Int}\,}}M$$\end{document} to a given finite order, and hit a specified diverging discrete set in the convex domain. We first show approximation of this kind on bounded strongly convex domains and then generalise it to arbitrary convex domains. As a consequence we show that any compact bordered Riemann surface properly embeds into a convex domain as a complete curve under a suitable geometric condition on the boundary of the codomain.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Convex domains and K-spectral sets
    Catalin Badea
    Michel Crouzeix
    Bernard Delyon
    Mathematische Zeitschrift, 2006, 252 : 345 - 365
  • [42] Riesz means associated with convex domains in the plane
    Andreas Seeger
    Sarah Ziesler
    Mathematische Zeitschrift, 2001, 236 : 643 - 676
  • [43] Discrete holomorphic geometry I. Darboux transformations and spectral curves
    Bohle, C.
    Pedit, F.
    Pinkall, U.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 637 : 99 - 139
  • [44] On young hulls of convex curves in ℝ2n
    Sedykh V.
    Shapiro B.
    Journal of Geometry, 1998, 63 (1-2) : 168 - 182
  • [45] On a nonlocal contracting flow for closed convex plane curves
    Hao, Ruixia
    Zhang, Run
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (04)
  • [46] GEOMETRIC INEQUALITIES FOR STATIC CONVEX DOMAINS IN HYPERBOLIC SPACE
    Hu, Yingxiang
    Li, Haizhong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5587 - 5615
  • [47] The Existence Problem for Steiner Networks in Strictly Convex Domains
    Alexandre Freire
    Archive for Rational Mechanics and Analysis, 2011, 200 : 361 - 404
  • [48] Boundary value problems for the Laplacian in convex and semiconvex domains
    Mitrea, Dorina
    Mitrea, Marius
    Yan, Lixin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (08) : 2507 - 2585
  • [49] Optimal Sobolev estimates for ¯∂ on convex domains of finite type
    Heungju Ahn
    Hong Rae Cho
    Mathematische Zeitschrift, 2003, 244 : 837 - 857
  • [50] On the Geometric Median of Convex, Triangular and Other Polygonal Domains
    Panov, P. A.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 26 : 62 - 75