Large Deviation Principle for Stochastic Reaction–Diffusion Equations with Superlinear Drift on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} Driven by Space–Time White Noise

被引:0
作者
Yue Li [1 ]
Shijie Shang [1 ]
Jianliang Zhai [1 ]
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
关键词
Stochastic reaction–diffusion equation; Large deviation principle; Unbounded domain; Space–time white noise; Weak convergence method; Superlinear drift term; Primary 60H15; Secondary 60F10; 35R60;
D O I
10.1007/s10959-024-01345-1
中图分类号
学科分类号
摘要
In this paper, we consider stochastic reaction–diffusion equations with superlinear drift on the real line R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} driven by space–time white noise. A Freidlin–Wentzell large deviation principle is established by a modified weak convergence method on the space C([0,T],Ctem(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C([0,T], C_\textrm{tem}(\mathbb {R}))$$\end{document}, where Ctem(R):={f∈C(R):supx∈R|f(x)|e-λ|x|<∞for anyλ>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\textrm{tem}(\mathbb {R}):=\{f\in C(\mathbb {R}): \sup _{x\in \mathbb {R}} \left( |f(x)|e^{-\lambda |x|}\right) <\infty \text { for any } \lambda >0\}$$\end{document}. Obtaining the main result in this paper is challenging due to the setting of unbounded domain, the space–time white noise, and the superlinear drift term without dissipation. To overcome these difficulties, the specially designed family of norms on the Fréchet space C([0,T],Ctem(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C([0,T], C_\textrm{tem}(\mathbb {R}))$$\end{document}, one-order moment estimates of the stochastic convolution, and two nonlinear Gronwall-type inequalities play an important role.
引用
收藏
页码:3496 / 3539
页数:43
相关论文
共 35 条
[11]  
Foondun M(2021)Large deviation principles of obstacle problems for quasilinear stochastic PDEs Appl. Math. Optim. 83 849-879
[12]  
Nualart E(1991)On the support of solutions to the heat equation with noise Stoch. Stoch. Rep. 37 225-245
[13]  
Freidlin MI(2014)Nonuniqueness for a parabolic SPDE with Ann. Probab. 42 2032-2112
[14]  
Iwata K(2021)-Hölder diffusion coefficients Commun. Math. Phys. 384 699-732
[15]  
Manthey R(2021)The speed of a random front for stochastic reaction–diffusion equations with strong noise Stoch. Process. Appl. 142 159-194
[16]  
Zausinger T(2023)Systems of small-noise stochastic reaction–diffusion equations satisfy a large deviations principle that is uniform over all initial data Electron. J. Probab. 28 1-29
[17]  
Mytnik L(1994)Global well-posedness to stochastic reaction–diffusion equations on the real line Can. J. Math. 46 415-437
[18]  
Neuman E(1992) with super-linear drifts driven by multiplicative space-time white noise Ann. Probab. 20 504-537
[19]  
Mytnik L(undefined)Two contrasting properties of solutions for one-dimensional stochastic partial differential equations undefined undefined undefined-undefined
[20]  
Perkins E(undefined)Large deviations for a reaction–diffusion equation with non-Gaussian perturbations undefined undefined undefined-undefined