Delineating G × E interactions by AMMI method for yield attributes in cowpea (Vigna unguiculata(L.) Walp.)

被引:0
|
作者
Manish Sharma [1 ]
M. P. Patel [1 ]
P. R. Patel [1 ]
P. J. Patel [2 ]
机构
[1] Pulses Research Station,
[2] SDAU,undefined
[3] Seed Spices Research Station,undefined
[4] SDAU,undefined
来源
Vegetos | 2024年 / 37卷 / 5期
关键词
Cowpea; Stability; Environment; AMMI;
D O I
10.1007/s42535-024-01004-0
中图分类号
学科分类号
摘要
Cowpea can tolerate a wide range of climate conditions. Despite this, crop yields are often low due to a lack of stable, drought-tolerant varieties. The additive main effects and multiplicative interactions (AMMI) model was used in the current study to examine how cowpea genotypes responded to environmental conditions based on variations in yield and its contributing factors. The experiment used a randomized complete block design with three replications over two consecutive years at six locations. Over multiple harvests, yield and its component traits such as the total number of pods per plant, pod length (cm), hundred seeds weight (g), and yield per hectare were evaluated in the rainy season in 2020 and 2021. Stability tests for multivariate stability parameters were performed based on analyses of variance. For all the traits, the pooled analysis of variance indicated highly significant (p < 0.01) variations between genotypes, environments, and genotypes by environment (GEI). Furthermore, the first, second, and third main component axes (IPCA1, IPCA2, and IPCA3) explained most of the GEI for these attributes. AMMI1 and AMMI2 biplot analyses showed differential stability of genotypes for yield and its component traits with few exceptions. The best genotype, according to the ideal genotype ranking, was genotype KGC 1. Genotypes KGC5 and KGC2, on the other hand, had high yields that were especially suited to the LAD environment during the 2021 growing season. Location-specific adaptation of genotypes indicates that location-specific breeding needs to be undertaken along with the focus on wider adaptability.
引用
收藏
页码:2051 / 2058
页数:7
相关论文
共 50 条
  • [11] Anthocyanins in cowpea [Vigna unguiculata (L.) Walp. ssp. unguiculata]
    Tae Joung Ha
    Myoung-Hee Lee
    Yu Na Jeong
    Jin Hwan Lee
    Sang-Ik Han
    Chang-Hwan Park
    Suk-Bok Pae
    Chung-Dong Hwang
    In-Youl Baek
    Keum-Yong Park
    Food Science and Biotechnology, 2010, 19 : 821 - 826
  • [12] Genetic analysis of yield component traits in cowpea [Vigna unguiculata (L.) Walp.]
    dos Santos, Samiria Pinheiro
    Araujo, Mauricio dos Santos
    Lelis de Aragao, Walter Frazao
    Damasceno-Silva, Kaesel Jackson
    Rocha, Maurisrael de Moura
    CROP BREEDING AND APPLIED BIOTECHNOLOGY, 2024, 24 (01):
  • [13] COMBINING ABILITY FOR YIELD OVER ENVIRONMENT IN COWPEA [VIGNA UNGUICULATA (L.)WALP.]
    Pandey, Bhawna
    Singh, Y. V.
    LEGUME RESEARCH, 2010, 33 (03) : 190 - 195
  • [14] Genetics of juvenile phase in cowpea [Vigna unguiculata (L.) Walp.]
    Ishiyaku, Mohammad F.
    Singh, Bir B.
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2003, 1 (3-4): : 133 - 136
  • [15] Ethnobotanical study of cowpea (Vigna unguiculata (L.) Walp.) in Senegal
    Sarr, Awa
    Bodian, Amy
    Gueye, Mame Codou
    Gueye, Badara
    Kanfany, Ghislain
    Diatta, Cyril
    Bougma, Lardia Ali
    Diop, Elisabeth A. M. C.
    Cisse, Ndiaga
    Diouf, Diaga
    Leclerc, Christian
    JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE, 2022, 18 (01)
  • [16] SCREENING FOR DROUGHT TOLERANCE IN COWPEA VIGNA UNGUICULATA (L.) WALP.
    Anantharaju, P.
    Muthiah, A. R.
    LEGUME RESEARCH, 2008, 31 (04) : 283 - 285
  • [17] Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp.
    R. S. Pasquet
    Theoretical and Applied Genetics, 2000, 101 : 211 - 219
  • [18] Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp.
    Pasquet, RS
    THEORETICAL AND APPLIED GENETICS, 2000, 101 (1-2) : 211 - 219
  • [19] Inheritance of time to flowering in cowpea (Vigna unguiculata (L.) Walp.)
    M. F. Ishiyaku
    B. B. Singh
    P. Q. Craufurd
    Euphytica, 2005, 142 : 291 - 300
  • [20] GENETIC ANALYSIS OF VEGETABLE COWPEA [VIGNA UNGUICULATA (L.) WALP.]
    Subbiah, A.
    Prabhu, M.
    Rajangam, J.
    Jagadeesan, R.
    Anbu, S.
    LEGUME RESEARCH, 2013, 36 (01) : 1 - 9