Accurate optimizing proton exchange membrane fuel cell parameters using fitness deviation-based adaptive differential evolution

被引:0
|
作者
Jangir, Pradeep [1 ,2 ,3 ,4 ]
Arpita [5 ]
Agrawal, Sunilkumar P. [6 ]
Pandya, Sundaram B. [7 ]
Parmar, Anil [7 ]
Tejani, Ghanshyam G. [8 ,9 ]
Trivedi, Bhargavi Indrajit [10 ]
机构
[1] Chandigarh Univ, Univ Ctr Res & Dev, Gharuan 140413, Mohali, India
[2] Graph Era Hill Univ, Dept CSE, Dehra Dun, India
[3] Graph Era, Dept CSE, Dehra Dun 248002, Uttarakhand, India
[4] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11937, Jordan
[5] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Biosci, Chennai 602105, India
[6] Govt Engn Coll, Dept Elect Engn, Gandhinagar 382028, Gujarat, India
[7] Shri KJ Polytech, Dept Elect Engn, Bharuch 392001, India
[8] Jadara Univ, Jadara Univ Res Ctr, Irbid, Jordan
[9] Eth Infotech, Res & Dev, Vadodara, Gujarat, India
[10] Vishwakarma Govt Engn Coll, Ahmadabad, Gujarat, India
关键词
Parameter estimation; Proton exchange membrane fuel cell; PEMFC; Differential evolution; Optimization; PEMFC MODEL; OPTIMIZATION; ALGORITHM; IDENTIFICATION; ADAPTATION; SYSTEMS;
D O I
10.1007/s11581-024-05999-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane fuel cells (PEMFCs) are complex, nonlinear systems whose performance depends on several interrelated parameters. Accurate estimation of these parameters is crucial for enhancing the efficiency and reliability of PEMFCs. In this paper, we used Fitness Deviation-based Differential Evolution (FD-DE) algorithm to optimally identify the unknown parameters of PEMFC models. An adaptive parameter control with wavelet basis function and Gaussian distribution, a hybrid trial vector generation strategy using t-distribution based perturbation, and a dimensional replacement mechanism for maintaining population diversity are introduced in the FD-DE algorithm. The innovations in these algorithms tackle the common problems in differential evolution algorithms, including premature convergence and loss of diversity. The proposed FD-DE algorithm is validated on twelve different PEMFC case studies under different operating conditions and compared with several state-of-the-art algorithms, including other DE variants and non-DE algorithms. For that purpose, the optimization targets seven parameters xi 1,xi 2,xi 3,xi 4,lambda,Rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi }_{1}, {\xi }_{2}, {\xi }_{3}, {\xi }_{4}, \lambda , {R}_{c}$$\end{document} and B to closely match the polarization curves to those specified in the manufacturer datasheet, focusing initially on six primary stacks: BCS 500-W PEM, STD 250-W PEM, Nedstack PS6 PEM, 500W SR-12PEM, H-12 PEM, and HORIZON 500W PWM. The optimization approach is to minimize the sum of squared errors (SSE) between the predicted stack voltages of the model and the experimentally measured results. Absolute error (AE), relative error (RE), and mean bias error (MBE) are assessed across different datasheets. A comparative statistical analysis is made among several DE variants FD-DE, TDE, MadDE, LSHADE, LSHADE-cnEpSin, jSO, PaDE, and non-DE algorithms ACS, SSA, and TEO. The results show that the FD-DE algorithm performs consistently better than existing strategies in terms of accuracy, convergence speed and stability, and provides better parameter estimation with lower errors. The effectiveness of the FD-DE algorithm in solving complex optimization problems and its potential to enhance PEMFC modeling and analysis is shown in this work.
引用
收藏
页码:1823 / 1874
页数:52
相关论文
共 50 条
  • [1] Extracting Accurate Parameters from a Proton Exchange Membrane Fuel Cell Model Using the Differential Evolution Ameliorated Meta-Heuristics Algorithm
    Kanouni, Badreddine
    Laib, Abdelbaset
    ENERGIES, 2024, 17 (10)
  • [2] Parameter configuration using differential evolution for proton exchange membrane fuel cell system
    Li, Xin
    Qin, Jin
    Yu, Datai
    Journal of Computational Information Systems, 2011, 7 (03): : 770 - 777
  • [3] Optimizing parameter extraction in proton exchange membrane fuel cell models via differential evolution with dynamic crossover strategy
    Saadaoui, Driss
    Elyaqouti, Mustapha
    Choulli, Imade
    Assalaou, Khalid
    Ben Hmamou, Dris
    Lidaighbi, Souad
    Arjdal, El hanafi
    Elhammoudy, Abdelfattah
    Abazine, Ismail
    ENERGY, 2025, 321
  • [4] A fault diagnosis model for proton exchange membrane fuel cell based on impedance identification with differential evolution algorithm
    Du, Runben
    Wei, Xuezhe
    Wang, Xueyuan
    Chen, Siqi
    Yuan, Hao
    Dai, Haifeng
    Ming, Pingwen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (78) : 38795 - 38808
  • [5] Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution
    Gong, Wenyin
    Cai, Zhihua
    ENERGY, 2013, 59 : 356 - 364
  • [6] Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm
    Xu B.
    Huagong Xuebao/CIESC Journal, 2021, 72 (03): : 1512 - 1520
  • [7] Optimization of key parameters in the proton exchange membrane fuel cell
    Lin, Hung-Hsiang
    Cheng, Chin-Hsiang
    Soong, Chyi-Yeou
    Chen, Falin
    Yan, Wei-Mon
    JOURNAL OF POWER SOURCES, 2006, 162 (01) : 246 - 254
  • [8] Calculating Optimal Parameters of Proton Exchange Membrane Fuel Cell
    Menesy, Ahmed S.
    Sultan, Hamdy M.
    Hassan, Mohamed H.
    Elsayed, Salah K.
    Kamel, Salah
    2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021), 2021, : 405 - 413
  • [9] An enhanced efficient optimization algorithm (EINFO) for accurate extraction of proton exchange membrane fuel cell parameters
    Manish Kumar Singla
    Mohamed H. Hassan
    Jyoti Gupta
    Francisco Jurado
    Parag Nijhawan
    Salah Kamel
    Soft Computing, 2023, 27 : 9619 - 9638
  • [10] An enhanced efficient optimization algorithm (EINFO) for accurate extraction of proton exchange membrane fuel cell parameters
    Singla, Manish Kumar
    Hassan, Mohamed H.
    Gupta, Jyoti
    Jurado, Francisco
    Nijhawan, Parag
    Kamel, Salah
    SOFT COMPUTING, 2023, 27 (14) : 9619 - 9638