Development of rotary-type electrostatic motor for MEMS microrobot

被引:1
作者
Lyu, Shuxin [1 ]
Tamaki, Yuya [1 ]
Morishita, Katsuyuki [1 ]
Saito, Ken [2 ]
机构
[1] Nihon Univ, Grad Sch Sci & Technol, Dept Precis Machinery Engn, Tokyo, Japan
[2] Nihon Univ, Coll Sci & Technol, Dept Precis Machinery Engn, Chiba, Japan
关键词
Electrostatic; Rotary-type motor; MEMS; Microrobot; ROBOT;
D O I
10.1007/s10015-024-00996-x
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Recently, many researchers have expected millimeter-sized microrobots to work in narrow spaces. However, it is challenging to integrate the actuators, controllers, sensors, and energy sources into millimeter-sized microrobots. A small actuator with low power consumption is required to realize millimeter-sized microrobots. Previously, the authors developed a new linear electrostatic motor for microrobots. However, most microrobots rely on rotary actuators to expand their application scenarios and enhance adaptability. In this paper, the authors designed and developed a rotary-type electrostatic motor to provide a low-power drive solution for microrobots to address the limitations of linear motors and broaden their range of applications. Through experimentation, we identified an issue with reverse rotation in the electrostatic motor and analyzed its causes. To address the reverse-rotation issue, we proposed improvements, including optimizing the electrode structure and adjusting the drive waveform, which significantly enhanced the stability of forward rotation. The author plans to refine the motor's design further and integrate it into a microrobot system.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 16 条
[1]  
Baisch A. T., 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), P5360, DOI 10.1109/IROS.2010.5651789
[2]   Magnetically Controllable Gastrointestinal Steering of Video Capsules [J].
Carpi, Federico ;
Kastelein, Nathan ;
Talcott, Michael ;
Pappone, Carlo .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (02) :231-234
[3]   A Wireless Robot for Networked Laparoscopy [J].
Castro, Cristian A. ;
Alqassis, Adham ;
Smith, Sara ;
Ketterl, Thomas ;
Sun, Yu ;
Ross, Sharona ;
Rosemurgy, Alexander ;
Savage, Peter P. ;
Gitlin, Richard D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (04) :930-936
[4]   An untethered, electrostatic, globally controllable MEMS micro-robot [J].
Donald, BR ;
Levey, CG ;
McGray, CD ;
Paprotny, I ;
Rus, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2006, 15 (01) :1-15
[5]   Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards [J].
Edqvist, Erik ;
Snis, Niklas ;
Mohr, Raimon Casanova ;
Scholz, Oliver ;
Corradi, Paolo ;
Gao, Jianbo ;
Dieguez, Angel ;
Wyrsch, Nicolas ;
Johansson, Stefan .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (07)
[6]   Biomimetics robots from bio-inspiration to implementation [J].
Habib, Maki K. ;
Watanabe, Keigo ;
Izumi, Kiyotaka .
IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 2007, :143-+
[7]   Raven-II: An Open Platform for Surgical Robotics Research [J].
Hannaford, Blake ;
Rosen, Jacob ;
Friedman, Diana W. ;
King, Hawkeye ;
Roan, Phillip ;
Cheng, Lei ;
Glozman, Daniel ;
Ma, Ji ;
Kosari, Sina Nia ;
White, Lee .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (04) :954-959
[8]  
Harada D., 2017, JSPE, DOI [10.1299/jsmermd.2019.2P2-P01, DOI 10.1299/JSMERMD.2019.2P2-P01]
[9]   Adaptive locomotion of artificial microswimmers [J].
Huang, H. -W. ;
Uslu, F. E. ;
Katsamba, P. ;
Lauga, E. ;
Sakar, M. S. ;
Nelson, B. J. .
SCIENCE ADVANCES, 2019, 5 (01)
[10]   Neural networks IC controlled multi-legged walking MEMS robot with independent leg mechanism [J].
Kawamura, Satoshi ;
Tanaka, Daisuke ;
Tanaka, Taisuke ;
Noguchi, Daisuke ;
Hayakawa, Yuichiro ;
Kaneko, Minami ;
Saito, Ken ;
Uchikoba, Fumio .
ARTIFICIAL LIFE AND ROBOTICS, 2018, 23 (03) :380-386