An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning

被引:0
作者
Hou, Xiaowen [1 ,2 ]
Hua, Menglei [3 ]
Zhang, Wei [4 ]
Ji, Jianxin [3 ]
Zhang, Xuan [3 ]
Jiang, Huiru [5 ]
Li, Mengyun [2 ]
Wu, Xiaoxiao [2 ]
Zhao, Wenwen [2 ]
Sun, Shuxin [6 ]
Cao, Lei [3 ]
Wang, Liuying [7 ]
机构
[1] Ningbo Hangzhou Bay Hosp, Ningbo, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Med, Ren Ji Hosp, Shanghai, Peoples R China
[3] Harbin Med Univ, Sch Publ Hlth, Dept Biostat, Harbin 150081, Peoples R China
[4] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Div Cardiol,State Key Lab Syst Med Canc, Shanghai 200127, Peoples R China
[5] Shanghai Jiao Tong Univ, Renji Hosp, Dept Cardiol, Shanghai 200127, Peoples R China
[6] Jiaxing Univ, Affiliated Hosp 2, Dept Ultrasonog, Jiaxing, Peoples R China
[7] Harbin Med Univ, Dept Hlth Management, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
FINE-NEEDLE-ASPIRATION; ASSOCIATION GUIDELINES; CANCER STATISTICS; ULTRASOUND; SYSTEM; RISK; MALIGNANCY; MANAGEMENT; FEATURES; FNA;
D O I
10.1038/s41597-024-04156-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ultrasonography (US) of thyroid nodules is often time consuming and may be inconsistent between observers, with a low positivity rate for malignancy in biopsies. Even after determining the ultrasound Thyroid Imaging Reporting and Data System (TIRADS) stage, Fine needle aspiration biopsy (FNAB) is still required to obtain a definitive diagnosis. Although various deep learning methods were developed in medical field, they tend to be trained using TI-RADS reports as image labels. Here, we present a large US dataset with pathological diagnosis annotation for each case, designed for developing deep learning algorithms to directly infer histological status from thyroid ultrasound images. The dataset was collected from two retrospective cohorts, which consists of 8508 US images from 842 cases. Additionally, we explained three deep learning models used as validation examples using this dataset.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Usefulness of Color Doppler Ultrasonography in the Risk Stratification of Thyroid Nodules
    Maddaloni, Ernesto
    Briganti, Silvia Irina
    Crescenzi, Anna
    Beretta Anguissola, Giuseppina
    Perrella, Eleonora
    Taffon, Chiara
    Palermo, Andrea
    Manfrini, Silvia
    Pozzilli, Paolo
    Lauria Pantano, Angelo
    EUROPEAN THYROID JOURNAL, 2021, 10 (04) : 339 - 344
  • [42] Computer-Aided Detection and Diagnosis of Thyroid Nodules Using Machine and Deep Learning Classification Algorithms
    Shankarlal, B.
    Sathya, P. D.
    Sakthivel, V. P.
    IETE JOURNAL OF RESEARCH, 2023, 69 (02) : 995 - 1006
  • [43] Evaluation of cytologically benign solitary thyroid nodules by ultrasonography: A retrospective analysis of 1877 cases
    Kihara, Minoru
    Hirokawa, Mitsuyoshi
    Masuoka, Hiroo
    Yabuta, Tomonori
    Shindo, Hisakazu
    Higashiyama, Takuya
    Fukushima, Mitsuhiro
    Yamada, Osamu
    Takamura, Yuuki
    Ito, Yasuhiro
    Kobayashi, Kaoru
    Miya, Akihiro
    Miyauchi, Akira
    AURIS NASUS LARYNX, 2013, 40 (03) : 308 - 311
  • [44] Diagnostic Accuracy of Ultrasonography in Classifying Thyroid Nodules Compared with Fine-Needle Aspiration
    Al-Ghanimi, Ibrahim Abobaker
    Al-Sharydah, Abdulaziz Mohammad
    Al-Mulhim, Saqar
    Faisal, Sarah
    Al-Abdulwahab, Abdulrahman
    Al-Aftan, Mohammed
    Abuhaimed, Abdulrahman
    SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES, 2020, 8 (01): : 25 - 31
  • [45] Diagnostic Performance of Neck Ultrasonography in the Preoperative Evaluation for Extrathyroidal Extension of Suspicious Thyroid Nodules
    Ramundo, Valeria
    Di Gioia, Cira Rosaria Tiziana
    Falcone, Rosa
    Lamartina, Livia
    Biffoni, Marco
    Giacomelli, Laura
    Filetti, Sebastiano
    Durante, Cosimo
    Grani, Giorgio
    WORLD JOURNAL OF SURGERY, 2020, 44 (08) : 2669 - 2674
  • [46] Improving Diagnostic Performance for Thyroid Nodules Classified as Bethesda Category III or IV: How and by Whom Ultrasonography Should be Performed
    Scerrino, Gregorio
    Cocorullo, Gianfranco
    Mazzola, Sergio
    Melfa, Giuseppina
    Orlando, Giuseppina
    Laise, Iole
    Corigliano, Alessandro
    Lo Brutto, Daniela
    Cipolla, Calogero
    Graceffa, Giuseppa
    JOURNAL OF SURGICAL RESEARCH, 2021, 262 : 203 - 211
  • [47] Deep learning on ultrasound images of thyroid nodules
    Sharifi, Yasaman
    Bakhshali, Mohamad Amin
    Dehghani, Toktam
    DanaiAshgzari, Morteza
    Sargolzaei, Mahdi
    Eslami, Saeid
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (02) : 636 - 655
  • [48] Deep learning approaches for differentiating thyroid nodules with calcification: a two-center study
    Chen, Chen
    Liu, Yuanzhen
    Yao, Jincao
    Wang, Kai
    Zhang, Maoliang
    Shi, Fang
    Tian, Yuan
    Gao, Lu
    Ying, Yajun
    Pan, Qianmeng
    Wang, Hui
    Wu, Jinxin
    Qi, Xiaoqing
    Wang, Yifan
    Xu, Dong
    BMC CANCER, 2023, 23 (01)
  • [49] Deep convolutional neural network for classification of thyroid nodules on ultrasound: Comparison of the diagnostic performance with that of radiologists
    Kim, Yeon-Jae
    Choi, Yangsean
    Hur, Su-Jin
    Park, Ki-Sun
    Kim, Hyun-Jin
    Seo, Minkook
    Lee, Min Kyoung
    Jung, So-Lyung
    Jung, Chan Kwon
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 152
  • [50] Distinguishing benign from malignant thyroid nodules using thyroid ultrasonography: utility of adding superb microvascular imaging and elastography
    Ahn, Hye Shin
    Lee, Jong Beum
    Seo, Mirinae
    Park, Sung Hee
    Choi, Byung Ihn
    RADIOLOGIA MEDICA, 2018, 123 (04): : 260 - 270