Aggregation-Diffusion Energies on Cartan-Hadamard Manifolds of Unbounded Curvature

被引:1
作者
Fetecau, Razvan C. [1 ]
Park, Hansol [1 ]
机构
[1] Simon Fraser Univ, Dept Math, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
关键词
Cartan-Hadamard manifolds; Global minimizers; Diffusion on manifolds; Logarithmic HLS inequality; Comparison theorems; POROUS-MEDIUM EQUATION; STATIONARY STATES; RIEMANNIAN-MANIFOLDS; MINIMIZERS; MODEL; FUNCTIONALS; EXISTENCE;
D O I
10.1007/s12220-024-01797-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an aggregation-diffusion energy on Cartan-Hadamard manifolds with sectional curvatures that can grow unbounded at infinity. The energy corresponds to a macroscopic aggregation model that involves nonlocal interactions and linear diffusion. We establish necessary and sufficient conditions on the growth at infinity of the attractive interaction potential for ground states to exist. Specifically, we derive explicit conditions on the attractive potential in terms of the bounds on the sectional curvatures at infinity. To prove our results we establish a new logarithmic Hardy-Littlewood inequality for Cartan-Hadamard manifolds of unbounded curvature.
引用
收藏
页数:43
相关论文
共 42 条
  • [1] Alas L., 2019, Maximum Principles and Geometric Applications
  • [2] AMBROSIO L, 2005, LEC MATH, P1
  • [3] [Anonymous], 1992, Geom. and Funct. Anal., DOI DOI 10.1007/BF01895706
  • [4] Dimensionality of Local Minimizers of the Interaction Energy
    Balague, D.
    Carrillo, J. A.
    Laurent, T.
    Raoul, G.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (03) : 1055 - 1088
  • [5] Stationary States and Asymptotic Behavior of Aggregation Models with Nonlinear Local Repulsion
    Burger, Martin
    Fetecau, Razvan
    Huang, Yanghong
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (01): : 397 - 424
  • [6] Burger M, 2013, COMMUN MATH SCI, V11, P709
  • [7] Existence of Compactly Supported Global Minimisers for the Interaction Energy
    Canizo, Jose A.
    Carrillo, Jose A.
    Patacchini, Francesco S.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) : 1197 - 1217
  • [8] Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics
    Carrillo, J. A.
    Hittmeir, S.
    Volzone, B.
    Yao, Y.
    [J]. INVENTIONES MATHEMATICAE, 2019, 218 (03) : 889 - 977
  • [9] Existence of ground states for aggregation-diffusion equations
    Carrillo, J. A.
    Delgadino, M. C.
    Patacchini, F. S.
    [J]. ANALYSIS AND APPLICATIONS, 2019, 17 (03) : 393 - 423
  • [10] Contractions in the 2-Wasserstein length space and thermalization of granular media
    Carrillo, JA
    McCann, RJ
    Villani, CD
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (02) : 217 - 263