Fourier regularization for solving sideways problem of a nonlinear time-fractional diffusion equation

被引:0
作者
Wu, Hanghang [1 ]
Yang, Hongqi [2 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Sun Yat Sen Univ, Sch Comp Sci & Engneering, Guangdong Prov Key Lab Computat Sci, Guangzhou 510006, Peoples R China
关键词
Nonlinear time-fractional diffusion equation; Sideways problem; Fourier regularization; A posteriori parameter choice; Error estimate; PARAMETER CHOICE RULE; SOURCE-TERM;
D O I
10.1007/s40314-025-03124-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the sideways problem of a nonlinear time-fractional diffusion equation. This is a severely nonlinear ill-posed problem, and a Fourier regularization method is used to solve the problem. We derive a priori error estimates and a posteriori error estimates of the regularization solution under a priori parameter and a posteriori parameter choice rules, respectively. Numerical results show the stability and effectiveness of the proposed regularization method.
引用
收藏
页数:16
相关论文
共 42 条
[1]  
Anastassiou GA, 2011, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-1-4614-0703-4
[2]  
Bai ZB, 2016, ELECTRON J DIFFER EQ
[3]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[4]   An iteration regularization for a time-fractional inverse diffusion problem [J].
Cheng, Hao ;
Fu, Chu-Li .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (11) :5642-5649
[5]   A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case [J].
Cheng, Hao ;
Feng, Xiao-Li ;
Fu, Chu-Li .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2010, 18 (07) :971-982
[6]   A mollification regularization method for stable analytic continuation [J].
Deng, Zhi-Liang ;
Fu, Chu-Li ;
Feng, Xiao-Li ;
Zhang, Yuan-Xiang .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (08) :1593-1608
[7]  
Deng ZL., 2011, Int J Numer Methods Appl, V6, P137
[8]   Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales [J].
Dinh Nguyen Duy Hai ;
Dang Duc Trong .
APPLIED MATHEMATICS LETTERS, 2020, 107
[9]  
Evans LawrenceC., 2010, PARTIAL DIFFERENTIAL, V2nd
[10]   Fourier regularization for a backward heat equation [J].
Fu, Chu-Li ;
Xiong, Xiang-Tuan ;
Qian, Zhi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :472-480