Charge Transport Systems with Fermi-Dirac Statistics for Memristors

被引:0
作者
Herda, Maxime [1 ]
Juengel, Ansgar [2 ]
Portisch, Stefan [2 ]
机构
[1] Univ Lille, Inria, CNRS, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Drift-diffusion equations; Fermi-Dirac statistics; Blakemore statistics; Global existence; Bounded weak solutions; Memristors; Semiconductors; Neuromorphic computing; SEMICONDUCTOR EQUATIONS; GLOBAL EXISTENCE; DIFFUSION;
D O I
10.1007/s00332-025-10140-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An instationary drift-diffusion system for the electron, hole, and oxygen vacancy densities, coupled to the Poisson equation for the electric potential, is analyzed in a bounded domain with mixed Dirichlet-Neumann boundary conditions. The electron and hole densities are governed by Fermi-Dirac statistics, while the oxygen vacancy density is governed by Blakemore statistics. The equations model the charge carrier dynamics in memristive devices used in semiconductor technology. The global existence of weak solutions is proved in up to three space dimensions. The proof is based on the free energy inequality, an iteration argument to improve the integrability of the densities, and estimations of the Fermi-Dirac integral. Under a physically realistic elliptic regularity condition, it is proved that the densities are bounded.
引用
收藏
页数:37
相关论文
共 29 条
  • [1] Abdel D., Chainais-Hillairet C., Farrell P., Herda M., Numerical analysis of a finite volume scheme for charge transport in perovskite solar cells, IMA J. Numer. Anal, 44, pp. 1090-1129, (2023)
  • [2] Abdel D., Glitzky A., Liero M., Analysis of a drift-diffusion model for perovskite solar cells, Discrete Cont. Dyn. Sys, 30, pp. 99-131, (2025)
  • [3] Abdel D., Vagner P., Fuhrmann J., Farrell P., Modelling charge transport in perovskite solar cells: potential-based and limiting ion depletion, Electrochim. Acta, 390, (2021)
  • [4] Ahmadi M.T., Arashloo B.A., Nguyen T.K., Analytical modeling of graphene oxide based memristor, Ain Shams Eng. J, 12, pp. 1741-1748, (2021)
  • [5] Bhattacharya A., Gahn M., Neuss-Radu M., Homogenization of a nonlinear drift–diffusion system for multiple charged species in a porous medium, Nonlin. Anal. Real World Appl, 68, (2022)
  • [6] Blakemore J., Approximations for Fermi–Dirac integrals, Solid State Electron, 25, pp. 1067-1076, (1982)
  • [7] Bothe D., Fischer A., Pierre M., Rolland G., Global existence for diffusion-electromigration systems in space dimension three and higher, Nonlin. Anal, 99, pp. 152-166, (2014)
  • [8] Cances C., Chanais-Hillairet C., Fuhrmann J., Gaudeul B., A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift–diffusion model, IMA J. Numer. Anal, 41, pp. 271-314, (2021)
  • [9] Choi Y., Lui R., Multi-dimensional electrochemistry model, Arch. Ration. Mech. Anal, 130, pp. 315-342, (1995)
  • [10] Degond P., Genieys S., Jungel A., A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects, J. Math. Pures Appl, 76, pp. 991-1015, (1997)