Frequency separation-based few-shot segmentation

被引:0
作者
Zhu, Xinming [1 ]
Chen, Zhenxue [1 ,2 ]
Liu, Chengyun [1 ]
Bi, Yu [1 ]
Liang, Tian [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[2] Minist Educ, Engn Res Ctr Intelligent Unmanned Syst, Jinan 250061, Peoples R China
关键词
Semantic segmentation; Few-shot learning; Few-shot semantic segmentation; Learning visual correspondence;
D O I
10.1007/s11760-025-03878-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, Few-shot Semantic Segmentation (FSS) has aimed to segment unseen class targets using a small number of labeled samples while leveraging high-level semantic features to address spatial inconsistencies between query and support targets. Traditional approaches often rely on prototype vectors and metric functions for feature interaction but fail to comprehensively capture all the features of the support images. To enhance detail extraction and feature alignment, we propose the High-Low Frequency Feature Fusion Attention Module (HLSFA). This module separates high-frequency and low-frequency components of the features. It then computes attention weights for the high-frequency components independently, significantly improving the representation of target region features. Additionally, we introduce the Recursive Cosine Fusion Module (RCFM), which enhances the representation of support and query features using cosine similarity and recursive enhancement mechanisms. Finally, the SASPP module is employed to fuse multi-scale features, further improving segmentation accuracy. Our approach achieves notable progress on the PASCAL-5i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5<^>i$$\end{document} and COCO-20i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20<^>i$$\end{document} benchmark datasets, reaching mIoU scores of 69.4, 70.2, 55.9, and 57.6%, respectively, showing significant improvement over existing methods. The code is publicly available at https://github.com/zxmyyds/FSFNet.
引用
收藏
页数:13
相关论文
共 41 条
[1]   DRNet: Disentanglement and Recombination Network for Few-Shot Semantic Segmentation [J].
Chang, Zhaobin ;
Gao, Xiong ;
Li, Na ;
Zhou, Huiyu ;
Lu, Yonggang .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) :5560-5574
[2]   Prototype-wise self-knowledge distillation for few-shot segmentation [J].
Chen, Yadang ;
Xu, Xinyu ;
Wei, Chenchen ;
Lu, Chuhan .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2024, 129
[3]   Dual Branch Multi-Level Semantic Learning for Few-Shot Segmentation [J].
Chen, Yadang ;
Jiang, Ren ;
Zheng, Yuhui ;
Sheng, Bin ;
Yang, Zhi-Xin ;
Wu, Enhua .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 :1432-1447
[4]  
Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, 10.48550/arXiv.1810.04805]
[5]  
Dosovitskiy A., 2021, INT C LEARNING REPRE
[6]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[7]   Self-support Few-Shot Semantic Segmentation [J].
Fan, Qi ;
Pei, Wenjie ;
Tai, Yu-Wing ;
Tang, Chi-Keung .
COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 :701-719
[8]  
Fateh A, 2024, Arxiv, DOI arXiv:2409.11316
[9]   Cycle association prototype network for few-shot semantic segmentation [J].
Hao, Zhuangzhuang ;
Shao, Ji ;
Gong, Bo ;
Yang, Jingwen ;
Jing, Ling ;
Chen, Yingyi .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
[10]   Simultaneous Detection and Segmentation [J].
Hariharan, Bharath ;
Arbelaez, Pablo ;
Girshick, Ross ;
Malik, Jitendra .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :297-312