Optical atomic clock interrogation using an integrated spiral cavity laser

被引:4
作者
Loh, William [1 ]
Reens, David [1 ]
Kharas, Dave [1 ]
Sumant, Alkesh [1 ]
Belanger, Connor [1 ]
Maxson, Ryan T. [1 ]
Medeiros, Alexander [1 ]
Setzer, William [1 ]
Gray, Dodd [1 ]
Debry, Kyle [1 ,2 ]
Bruzewicz, Colin D. [1 ]
Plant, Jason [1 ]
Liddell, John [1 ]
West, Gavin N. [2 ]
Doshi, Sagar [2 ]
Roychowdhury, Matthew [1 ]
Kim, May E. [1 ]
Braje, Danielle [1 ]
Juodawlkis, Paul W. [1 ]
Chiaverini, John [1 ,2 ]
Mcconnell, Robert [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02421 USA
[2] MIT, Cambridge, MA USA
关键词
THERMAL-NOISE; BRILLOUIN LASER; ACCURACY;
D O I
10.1038/s41566-024-01588-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical atomic clocks have demonstrated revolutionary advances in precision timekeeping, but their applicability to the real world is critically dependent on whether such clocks can operate outside the laboratory. Photonic integration offers one compelling solution to address the miniaturization and ruggedization needed to enable clock portability, but brings with it a new set of challenges in recreating the functionality of an optical clock using chip-scale building blocks. The clock laser used for atom interrogation is one particular point of uncertainty, as the performance of the meticulously engineered bulk-cavity-stabilized lasers would be exceptionally difficult to transfer to chip. Here we demonstrate that an integrated ultrahigh-quality-factor spiral cavity, when interfaced with a 1,348 nm seed laser, is able to reach a fractional frequency instability of 7.5 x 10-14 on chip. On frequency doubling the light to 674 nm, we use this laser to interrogate the narrow-linewidth transition of 88Sr+ and showcase the operation of a Sr-ion clock with short-term instability averaging down as 3.9x10-14/tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.9\times 1{0}<^>{-14}/\sqrt{\tau }$$\end{document} (tau, averaging time). Our demonstration of a high-performance optical atomic clock interrogated by an integrated spiral cavity laser opens the door for future advanced clock systems to be entirely constructed using lightweight, portable and mass-manufacturable integrated optics and electronics.
引用
收藏
页码:335 / 335
页数:17
相关论文
共 56 条
[1]   Subkilohertz comparison of the single-ion optical-clock 2S1/2-2D5/2 transition in two 88Sr+ traps [J].
Barwood, GP ;
Huang, G ;
Klein, HA ;
Gill, P ;
Clarke, RBM .
PHYSICAL REVIEW A, 1999, 59 (05) :R3178-R3181
[2]   Ultra-low-loss high-aspect-ratio Si3N4 waveguides [J].
Bauters, Jared F. ;
Heck, Martijn J. R. ;
John, Demis ;
Dai, Daoxin ;
Tien, Ming-Chun ;
Barton, Jonathon S. ;
Leinse, Arne ;
Heideman, Rene G. ;
Blumenthal, Daniel J. ;
Bowers, John E. .
OPTICS EXPRESS, 2011, 19 (04) :3163-3174
[3]   Zero-Dead-Time Operation of Interleaved Atomic Clocks [J].
Biedermann, G. W. ;
Takase, K. ;
Wu, X. ;
Deslauriers, L. ;
Roy, S. ;
Kasevich, M. A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (17)
[4]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+
[5]   27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18 [J].
Brewer, S. M. ;
Chen, J-S ;
Hankin, A. M. ;
Clements, E. R. ;
Chou, C. W. ;
Wineland, D. J. ;
Hume, D. B. ;
Leibrandt, D. R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (03)
[6]   Dual-species, multi-qubit logic primitives for Ca+/Sr+ trapped-ion crystals [J].
Bruzewicz, C. D. ;
McConnell, R. ;
Stuart, J. ;
Sage, J. M. ;
Chiaverini, J. .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[7]   A compact, transportable optical clock with 1 x 10-17 uncertainty and its absolute frequency measurement [J].
Cao, Jian ;
Yuan, Jinbo ;
Wang, Shaomao ;
Zhang, Ping ;
Yuan, Yi ;
Liu, Daoxin ;
Cui, Kaifeng ;
Chao, Sijia ;
Shu, Hualin ;
Lin, Yige ;
Cao, Shiying ;
Wang, Yuzhuo ;
Fang, Zhanjun ;
Fang, Fang ;
Li, Tianchu ;
Huang, Xueren .
APPLIED PHYSICS LETTERS, 2022, 120 (05)
[8]  
Chauhan N, 2024, Arxiv, DOI [arXiv:2402.16742, 10.48550/arXiv.2402.16742, DOI 10.48550/ARXIV.2402.16742]
[9]   Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation [J].
Davila-Rodriguez, J. ;
Baynes, F. N. ;
Ludlow, A. D. ;
Fortier, T. M. ;
Leopardi, H. ;
Diddams, S. A. ;
Quinlan, F. .
OPTICS LETTERS, 2017, 42 (07) :1277-1280
[10]   Ultracompact reference ultralow expansion glass cavity [J].
Didier, Alexandre ;
Millo, Jacques ;
Marechal, Baptiste ;
Rocher, Cyrus ;
Rubiola, Enrico ;
Lecomte, Romeo ;
Ouisse, Morvan ;
Delporte, Jerome ;
Lacroute, Clement ;
Kersale, Yann .
APPLIED OPTICS, 2018, 57 (22) :6470-6473