Integrated Circuits for Quantum Machine Learning Based on Superconducting Artificial Atoms and Methods of Their Control

被引:0
作者
Tolstobrov, A. E. [1 ,2 ]
Kadyrmetov, Sh. V. [1 ]
Fedorov, G. P. [1 ,2 ,3 ]
Sanduleanu, S. V. [1 ,2 ,3 ]
Lubsanov, V. B. [1 ]
Kalacheva, D. A. [1 ,2 ,5 ]
Bolgar, A. N. [1 ]
Dmitriev, A. Yu. [1 ,2 ,3 ]
Korostylev, E. V. [1 ]
Tikhonov, K. S. [4 ]
Astafiev, O. V. [1 ,5 ]
机构
[1] Moscow Inst Phys & Technol, Moscow, Russia
[2] Natl Univ Sci & Technol MISIS, Moscow, Russia
[3] Russian Quantum Ctr, Skolkovo, Russia
[4] LD Landau Inst Theoret Phys, Chernogolovka, Russia
[5] Skolkovo Inst Sci & Technol, Skolkovo, Russia
基金
俄罗斯科学基金会;
关键词
QUBITS;
D O I
10.1007/s11141-024-10342-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is devoted to the use of quantum integrated circuits based on superconducting artificial atoms to solve quantum machine learning problems. The process of designing such chips is de- scribed in detail, including the selection of the most important geometric parameters of the device, as well as numerical calculations of electromagnetic characteristics. The process of controlling a quantum integrated circuit is described. Much attention is paid to the implementation of single- and two-qubit operations. The qubit state readout procedure is also described. A brief introduction into the field of quantum machine learning is given. An algorithm that makes it possible to solve multilabel classification problems using quantum integrated circuits is described. The selection of optimal quantum circuits for the implementation of this algorithm is made using numerical simulations. The operation of the algorithm is demonstrated by the example of standard datasets. Obtained experimental results are compared with the results of theoretical calculations.
引用
收藏
页码:907 / 928
页数:22
相关论文
共 40 条
  • [1] Tripartite interactions between two phase qubits and a resonant cavity
    Altomare, F.
    Park, J. I.
    Cicak, K.
    Sillanpaa, M. A.
    Allman, M. S.
    Li, D.
    Sirois, A.
    Strong, J. A.
    Whittaker, J. D.
    Simmonds, R. W.
    [J]. NATURE PHYSICS, 2010, 6 (10) : 777 - 781
  • [2] [Anonymous], About us
  • [3] Quantum state preparation protocol for encoding classical data into the amplitudes of a quantum information processing register's wave function
    Ashhab, Sahel
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [4] Quality factor of a transmission line coupled coplanar waveguide resonator
    Besedin, Ilya
    Menushenkov, Alexey P.
    [J]. EPJ QUANTUM TECHNOLOGY, 2018, 5
  • [5] Dorogov A. E., 2022, ST PETERSBURG STATE, V15, P352, DOI [10.18721/JPM.153.265, DOI 10.18721/JPM.153.265]
  • [6] Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms
    Fedorov, G. P.
    Remizov, S., V
    Shapiro, D. S.
    Pogosov, W., V
    Egorova, E.
    Tsitsilin, I
    Andronik, M.
    Dobronosova, A. A.
    Rodionov, I. A.
    Astafiev, O., V
    Ustinov, A., V
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [7] INPUT AND OUTPUT IN DAMPED QUANTUM-SYSTEMS - QUANTUM STOCHASTIC DIFFERENTIAL-EQUATIONS AND THE MASTER EQUATION
    GARDINER, CW
    COLLETT, MJ
    [J]. PHYSICAL REVIEW A, 1985, 31 (06): : 3761 - 3774
  • [8] Coplanar waveguide resonators for circuit quantum electrodynamics
    Goeppl, M.
    Fragner, A.
    Baur, M.
    Bianchetti, R.
    Filipp, S.
    Fink, J. M.
    Leek, P. J.
    Puebla, G.
    Steffen, L.
    Wallraff, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (11)
  • [9] Supervised learning with quantum-enhanced feature spaces
    Havlicek, Vojtech
    Corcoles, Antonio D.
    Temme, Kristan
    Harrow, Aram W.
    Kandala, Abhinav
    Chow, Jerry M.
    Gambetta, Jay M.
    [J]. NATURE, 2019, 567 (7747) : 209 - 212
  • [10] Controlling the spontaneous emission of a superconducting transmon qubit
    Houck, A. A.
    Schreier, J. A.
    Johnson, B. R.
    Chow, J. M.
    Koch, Jens
    Gambetta, J. M.
    Schuster, D. I.
    Frunzio, L.
    Devoret, M. H.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (08)