Key reconciliation protocol for quantum key distribution

被引:1
作者
Sharma, Neha [1 ]
Saxena, Vikas [1 ]
Chamola, Vinay [2 ]
Hassija, Vikas [3 ]
机构
[1] JIIT, Dept Comp Sci & IT, Noida 201304, India
[2] BITS Pilani, Dept Elect & Elect Engn, Pilani Campus, Pilani 333031, India
[3] Kalinga Inst Ind Technol Bhubaneswar, Sch Engn, Bhubaneswar, India
关键词
Quantum Cryptography; Quantum Communication; Quantum Security; Quantum Information; Quantum Computing; CRYPTOGRAPHY; SECURITY; OPTICS; FIELD;
D O I
10.1140/epjqt/s40507-025-00319-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum cryptography, secret communications are delivered through a quantum channel. One of the most important breakthroughs in quantum cryptography has been the quantum key distribution (QKD). This process enables two distant parties to share secure communications based on physical laws. However, eavesdroppers can still interrupt the communication. To overcome this, we propose a different way to detect the presence of Eve through the polynomial interpolation technique. This technique also allows us for key verification. This approach prevents the receiver as well as the intruder from discovering the sender's fundamental basis. To fully utilize IBM quantum computers' quantum computing capabilities, this paper attempts to show % error against alpha (strength of eavesdropping) and the impact of noise on the success probability of the desired key bits. Furthermore, the success probability under depolarizing noise is explained for different qubit counts. In the enhanced QKD protocol, using polynomial interpolation for reconciliation shows a 50% probability of successful key generation. This is even when the noise is increased to the maximum capacity.
引用
收藏
页数:15
相关论文
共 45 条
[1]   A SECURE METHOD OF COMMUNICATION THROUGH BB84 PROTOCOL IN QUANTUM KEY DISTRIBUTION [J].
Anilkumar, Chunduru ;
Lenka, Swathi ;
Neelima, N. ;
Sathishkumar, V. E. .
SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (01) :25-33
[2]   Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics [J].
Avesani, M. ;
Calderaro, L. ;
Schiavon, M. ;
Stanco, A. ;
Agnesi, C. ;
Santamato, A. ;
Zahidy, M. ;
Scriminich, A. ;
Foletto, G. ;
Contestabile, G. ;
Chiesa, M. ;
Rotta, D. ;
Artiglia, M. ;
Montanaro, A. ;
Romagnoli, M. ;
Sorianello, V ;
Vedovato, F. ;
Vallone, G. ;
Villoresi, P. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[3]   Journeys from quantum optics to quantum technology [J].
Barnett, Stephen M. ;
Beige, Almut ;
Ekert, Artur ;
Garraway, Barry M. ;
Keitel, Christoph H. ;
Kendon, Viv ;
Lein, Manfred ;
Milburn, Gerard J. ;
Moya-Cessa, Hector M. ;
Murao, Mio ;
Pachos, Jiannis K. ;
Palma, G. Massimo ;
Paspalakis, Emmanuel ;
Phoenix, Simon J. D. ;
Piraux, Benard ;
Plenio, Martin B. ;
Sanders, Barry C. ;
Twamley, Jason ;
Vidiella-Barranco, A. ;
Kim, M. S. .
PROGRESS IN QUANTUM ELECTRONICS, 2017, 54 :19-45
[4]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[5]   FACTORING POLYNOMIALS OVER LARGE FINITE FIELDS [J].
BERLEKAMP, ER .
MATHEMATICS OF COMPUTATION, 1970, 24 (111) :713-+
[6]   Quantum cryptography beyond quantum key distribution [J].
Broadbent, Anne ;
Schaffner, Christian .
DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (01) :351-382
[7]   From quantum optics to quantum technologies [J].
Browne, Dan ;
Bose, Sougato ;
Mintert, Florian ;
Kim, M. S. .
PROGRESS IN QUANTUM ELECTRONICS, 2017, 54 :2-18
[8]   Experimental quantum e-commerce [J].
Cao, Xiao-Yu ;
Li, Bing-Hong ;
Wang, Yang ;
Fu, Yao ;
Yin, Hua-Lei ;
Chen, Zeng-Bing .
SCIENCE ADVANCES, 2024, 10 (02)
[9]   Twin-field quantum key distribution over a 511km optical fibre linking two distant metropolitan areas [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Wei-Jun ;
Han, Zhi-Yong ;
Ma, Shi-Zhao ;
Hu, Xiao-Long ;
Li, Yu-Huai ;
Liu, Hui ;
Zhou, Fei ;
Jiang, Hai-Feng ;
Chen, Teng-Yun ;
Li, Hao ;
You, Li-Xing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2021, 15 (08) :570-575
[10]   IBM's Quantum Leap: The Company Will Take Quantum Tech Past the 1,000-Qubit Mark in 2023 [J].
Choi, Charles Q. .
IEEE SPECTRUM, 2023, 60 (01) :46-47