A systematic review of machine learning applications in predicting opioid associated adverse events

被引:0
作者
Medina, Carlos R. Ramirez [1 ]
Benitez-Aurioles, Jose [2 ]
Jenkins, David A. [2 ]
Jani, Meghna [1 ,3 ,4 ]
机构
[1] Univ Manchester, Ctr Epidemiol Versus Arthrit, Ctr Musculoskeletal Res, Div Musculoskeletal & Dermatol Sci, Manchester, England
[2] Univ Manchester, Div Informat Imaging & Data Sci, Manchester, England
[3] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, NIHR Manchester Biomed Res Unit, Manchester, England
[4] Salford Royal Hosp, Northern Care Alliance, Salford, England
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
美国国家卫生研究院;
关键词
USE DISORDER; ALGORITHM; RISK; OVERDOSE; CRISIS;
D O I
10.1038/s41746-024-01312-4
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Machine learning has increasingly been applied to predict opioid-related harms due to its ability to handle complex interactions and generating actionable predictions. This review evaluated the types and quality of ML methods in opioid safety research, identifying 44 studies using supervised ML through searches of Ovid MEDLINE, PubMed and SCOPUS databases. Commonly predicted outcomes included postoperative opioid use (n = 15, 34%) opioid overdose (n = 8, 18%), opioid use disorder (n = 8, 18%) and persistent opioid use (n = 5, 11%) with varying definitions. Most studies (96%) originated from North America, with only 7% reporting external validation. Model performance was moderate to strong, but calibration was often missing (41%). Transparent reporting of model development was often incomplete, with key aspects such as calibration, imbalance correction, and handling of missing data absent. Infrequent external validation limited the generalizability of current models. Addressing these aspects is critical for transparency, interpretability, and future implementation of the results.
引用
收藏
页数:13
相关论文
共 86 条
[1]   Current status of opioid epidemic in the United Kingdom and strategies for treatment optimisation in chronic pain [J].
Alenezi, Aziza ;
Yahyouche, Asma ;
Paudyal, Vibhu .
INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2021, 43 (02) :318-322
[2]   Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? [J].
Anderson, Ashley B. ;
Grazal, Clare F. ;
Balazs, George C. ;
Potter, Benjamin K. ;
Dickens, Jonathan F. ;
Forsberg, Jonathan A. .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2020, 478 (07) :1603-1618
[3]   Quickly identifying people at risk of opioid use disorder in emergency departments: trade-offs between a machine learning approach and a simple EHR flag strategy [J].
Annis, Izabela E. ;
Jordan, Robyn ;
Thomas, Kathleen C. .
BMJ OPEN, 2022, 12 (09)
[4]   Predicting opioid use disorder before and after the opioid prescribing peak in the United States: A machine learning tool using electronic healthcare records [J].
Banks, Tyler J. ;
Nguyen, Tung D. ;
Uhlmann, Jeffery K. ;
Nair, Satish S. ;
Scherrer, Jeffrey F. .
HEALTH INFORMATICS JOURNAL, 2023, 29 (02)
[5]   Predicting Persistent Opioid Use after Hand Surgery: A Machine Learning Approach [J].
Baxter, Natalie B. ;
Ho, Allister Z. ;
Byrd, Jacqueline N. ;
Fernandez, Anne C. ;
Singh, Karandeep ;
Chung, Kevin C. .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2024, 154 (03) :573-580
[6]   Machine learning algorithms to predict seizure due to acute tramadol poisoning [J].
Behnoush, B. ;
Bazmi, E. ;
Nazari, S. H. ;
Khodakarim, S. ;
Looha, M. A. ;
Soori, H. .
HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (08) :1225-1233
[7]   Aiding the prescriber: developing a machine learning approach to personalized risk modeling for chronic opioid therapy amongst US Army soldiers [J].
Bjarnadottir, Margret Vilborg ;
Anderson, David B. ;
Agarwal, Ritu ;
Nelson, D. Alan .
HEALTH CARE MANAGEMENT SCIENCE, 2022, 25 (04) :649-665
[8]   Prediction of Future Chronic Opioid Use Among Hospitalized Patients [J].
Calcaterra, S. L. ;
Scarbro, S. ;
Hull, M. L. ;
Forber, A. D. ;
Binswanger, I. A. ;
Colborn, K. L. .
JOURNAL OF GENERAL INTERNAL MEDICINE, 2018, 33 (06) :898-905
[9]  
Che Zhengping, 2017, AMIA Annu Symp Proc, V2017, P525
[10]   External validation of machine learning algorithm predicting prolonged opioid prescriptions in opioid-naive lumbar spine surgery patients using a Taiwanese cohort [J].
Chen, Shin-Fu ;
Su, Chih-Chi ;
Huang, Chuan-Ching ;
Ogink, Paul T. ;
Yen, Hung-Kuan ;
Groot, Olivier Q. ;
Hu, Ming-Hsiao .
JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION, 2023, 122 (12) :1321-1330