Performance-aware routing optimization for graphene nanoribbon interconnects

被引:0
作者
Das, Subrata [1 ]
Deb, Arighna [2 ]
Das, Debesh Kumar [3 ]
Pandit, Soumya [1 ]
机构
[1] Univ Calcutta, Inst Radio Phys & Elect, Kolkata, India
[2] Kalinga Inst Ind Technol, Sch Elect Engn, Bhubaneswar, Orissa, India
[3] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata, India
来源
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES | 2025年 / 50卷 / 01期
关键词
Crosstalk; graphene nanoribbon interconnect; routing; interconnect resistance; interconnect delay;
D O I
10.1007/s12046-024-02666-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The use of graphene nanoribbon (GNR) interconnects has received significant attention in the domain of VLSI interconnects. Unlike conventional VLSI interconnects, routing GNR interconnects poses unique challenges due to their limited bending capabilities, restricted to angles of 0 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<^>{\circ }$$\end{document}, 60 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$60<^>{\circ }$$\end{document}, and 120 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$120<^>{\circ }$$\end{document}. The hybrid cost of GNR interconnects, which includes resistance, depends on both the length of the interconnect and the bending angles it undergoes. This paper presents the development of a routing tree for circuits utilizing GNR interconnects, with a primary objective of minimizing the product of crosstalk effects, total resistance, and interconnect delay. Our algorithm is subjected to thorough testing using a random dataset, resulting in highly promising outcomes.
引用
收藏
页数:12
相关论文
共 28 条
[1]  
Lemme C.M., Echtermeyer J.T., Baus M., Kurz H., A graphene field-effect device, IEEE Electron Device Lett, 28, pp. 282-284, (2007)
[2]  
Naeemi A., Meindl D.J., Performance benchmarking for graphene nano-ribbon, carbon nanotube, and cu interconnects, in Proceedings of the IEEE Int. Interconnect Technology Conference, pp. 183-185, (2008)
[3]  
Shao Q., Liu G., Teweldebrhan D., Balandin A.A., High temperature quenching of electrical resistance in graphene interconnects, Appl. Phys. Lett, 92, (2008)
[4]  
Melinda H.Y., Ozyilmaz B., Zhang Y., Kim P., Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett, 98, (2007)
[5]  
Tan Y., Ma Q., Chilstedt S., Wong Martin D.F., Chen D., Routing with graphene nanoribbons, 16th IEEE Asia and South Pacific Design Automation Conference (ASP-DAC 2011), pp. 323-329, (2011)
[6]  
Tan Y., Ma Q., Chilstedt S., Wong Martin D.F., Chen D., A routing algorithm for graphene nanoribbon circuit, ACM Trans. Des. Autom. Electron. Syst, 18, pp. 1-18, (2013)
[7]  
Das S., Das K.D., Steiner tree construction for graphene nanoribbon based circuits in presence of obstacles, 2018 IEEE International Symposium on Devices, Circuits and Systems (ISDCS), pp. 1-6, (2018)
[8]  
Das S., Das S., Majumder A., Dasgupta P., Das Kumar D., Delay estimates for graphene nanoribbons a novel measure of fidelity and experiments with global routing trees, Proceedings of the 26th edition on Great Lakes Symposium on VLSI, pp. 263-268, (2016)
[9]  
Das S., Das Kumar D., Pandit S., A global routing method for graphene nanoribbons based circuits and interconnects, ACM J. Emerg. Technol. Comput. Syst, 16, pp. 1-28, (2020)
[10]  
Das S., Das Kumar D., A technique to construct global routing trees for graphene nanoribbon (gnr), in 2017 18th IEEE International Symposium on Quality Electronic Design (ISQED), pp. 111-118, (2017)