Improvement of biochemical characteristics of tetracycline-contaminated soil for stimulating soybean growth using Arbuscular mycorrhizal fungi

被引:0
|
作者
Chang, Donghao [1 ,2 ,3 ,4 ]
Yu, Lina [1 ,2 ,3 ,4 ]
Mao, Yizhi [1 ,2 ,3 ,4 ]
Wu, Yunshu [1 ,2 ,3 ,4 ]
Cai, Baiyan [1 ,2 ,3 ,4 ]
机构
[1] Heilongjiang Univ, Engn Res Ctr Agr Microbiol Technol, Minist Educ, Harbin 150080, Peoples R China
[2] Heilongjiang Univ, Heilongjiang Prov Key Lab Ecol Restorat & Resource, Harbin 150080, Peoples R China
[3] Heilongjiang Univ, Coll Heilongjiang Prov, Key Lab Mol Biol, Harbin 150080, Peoples R China
[4] Heilongjiang Univ, Sch Life Sci, Harbin 150080, Peoples R China
基金
黑龙江省自然科学基金;
关键词
Tetracycline-contaminated soil; <italic>Funneliformis mosseae</italic>; Soybean; Soil resistance enzymes; Biomass; OXYTETRACYCLINE; DEGRADATION; SEEDLINGS; PHYTOREMEDIATION; ANTIBIOTICS; EARTHWORMS; CARBON;
D O I
10.1007/s10653-024-02343-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tetracycline (TC), as a new type of environmental pollutant, poses a great threat to human food safety and health, thus becoming the focus of human environmental protection issues. In this study, we selected an environmentally friendly microbial remediation method to degrade the residual TC in soil. An experiment was conducted with Funneliformis mosseae (F. mosseae) and artificial TC-contaminated soil to analyze the physiology, antimicrobial enzyme activities, and TC residues in soybean plants and rhizomatous soil. The results showed that the presence of TC in the soil inhibited the enzyme activities of soybean root system and soil, and suppressed the biomass of soybean. Inoculation of F. mosseae in TC-contaminated soil promoted the degradation of TC in the soil, enhanced soil resistance enzyme and urease activities (12.53-43.48%) around the root soil, and enhanced the soil resistance enzymes and promoted the uptake of nutrients in the soybean root system.We conclude that F. mosseae may reduce antibiotics or promote nutrient uptake to enhance plant resistance by altering inter-root enzyme activity. Therefore, this study provides a new theoretical basis for using AMF to remediate TC-contaminated soil and retard the stress of TC on the growth of soybean.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil
    Jamal, A
    Ayub, N
    Usman, M
    Khan, AG
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2002, 4 (03) : 205 - 221
  • [2] Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation
    Leal, Patricia Lopes
    Varon-Lopez, Maryeimy
    de Oliveira Prado, Isabelle Goncalves
    dos Santos, Jesse Valentim
    Fonseca Sousa Soares, Claudio Roberto
    Siqueira, Jose Oswaldo
    de Souza Moreira, Fatima Maria
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2016, 47 (04) : 853 - 862
  • [3] Arbuscular mycorrhizal fungi in wheat grown in copper contaminated soil
    Turchetto, Ricardo
    Volpi, Gabriel Baraldi
    da Silva, Rodrigo Ferreira
    da Ros, Clovis Orlando
    da Rosa, Genesio Mario
    Barros, Sinara
    Magalhaes, Juliano Borela
    Trombetta, Lucas Jose
    Andreola, Daiane Sartori
    da Silva, Ana Paula
    SEMINA-CIENCIAS AGRARIAS, 2022, 43 (04): : 1579 - 1594
  • [4] Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil
    Barua A.
    Gupta S.D.
    Mridha M.A.U.
    Bhuiyan M.K.
    Journal of Forestry Research, 2010, 21 (4) : 423 - 432
  • [5] Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil
    Adeyemi, Nurudeen Olatunbosun
    Atayese, Mufutau Olaoye
    Sakariyawo, Olalekan Suleiman
    Azeez, Jamiu Oladipupo
    Ridwan, Mudathir
    JOURNAL OF PLANT NUTRITION, 2021, 44 (11) : 1633 - 1648
  • [6] Impact of wildfire on soil characteristics and arbuscular mycorrhizal fungi
    Palta, Sahin
    Ozel, Halil Baris
    Kanbur, Sinem
    de Souza, Tancredo Augusto Feitosa
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (07)
  • [7] Effect of Arbuscular Mycorrhizal Fungi on Switchgrass Growth and Mineral Nutrition in Cadmium-Contaminated Soil
    Sun, Hong
    Fu, Jintao
    Yang, Fuyu
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2020, 29 (02): : 1369 - 1377
  • [8] Bioremediation of petroleum-contaminated soil with arbuscular mycorrhizal fungi and plant
    Wang, Li-Ping
    Guo, Guang-Xia
    Hua, Su-Lan
    Zhang, Wei-Wei
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2009, 38 (01): : 91 - 95
  • [9] Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil
    Neagoe, Aurora
    Iordache, Virgil
    Bergmann, Hans
    Kothe, Erika
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2013, 176 (02) : 273 - 286
  • [10] Experimental study for recovery of heavy metals from contaminated soil using arbuscular mycorrhizal fungi
    Budak, Bulent
    Onay, Turgut T.
    Goren, Aysegul Yagmur
    Khalvati, Ali
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2025, 35 (01) : 1 - 15