Corrosion-Electrochemical Behavior of Al-Nano-Al2O3 Metal Matrix Composites in an Aqueous 0.5 M NaCl Solution

被引:0
作者
Kvashnichev, A. G. [1 ]
Yolshina, L. A. [1 ]
Pryakhina, V. I. [2 ]
机构
[1] Russian Acad Sci, Inst High Temp Electrochem, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
来源
RUSSIAN METALLURGY | 2024年 / 2024卷 / 01期
关键词
molten salts; in situ aluminum matrix composite material; aluminum nanooxide; gravimetric corrosion; ALUMINUM; AL; MICROSTRUCTURE; ALLOYS;
D O I
10.1134/S0036029524701568
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The corrosion-electrochemical behavior of aluminum-aluminum nanooxide nanocomposites formed during the direct chemical interaction of molten aluminum with titanium nanooxide in molten alkali metal chlorides is studied at temperatures above 700 degrees C. Aluminum nanooxide crystals in the alpha-Al2O3 modification uniformly distributed over the metal matrix volume are detected by electron microscopy and X-ray diffraction. The corrosion rate in a 0.5 M NaCl solution determined by a gravimetric method decreases by 3-4 times during the transition from the initial aluminum to Al-Al2O3 composites, the character of corrosion changes from pitting to uniform, and the corrosion resistance class increases from 3 (resistant) to 2 (very resistant). This behavior is caused by the formation of a denser single-phase hydroxide coating on the surface of the composite as compared to a two-phase loose coating on aluminum. The corrosion potential does not depend on the introduction of aluminum oxide nanoparticles into the aluminum matrix.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 12 条
[1]   Electrochemical Synthesis of Titanium Oxide Nanopowders in a Molten Mixture of Alkali Chlorides and Nitrates [J].
Elshina, L. A. ;
Kvashnichev, A. G. ;
Pelegov, D. V. .
RUSSIAN METALLURGY, 2021, 2021 (08) :1029-1035
[2]  
Finkelstein AB, 2017, ACTA METALL SLOVACA, V23, P4, DOI 10.12776/ams.v23i1.808
[3]   Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3 wt.% NaCl solution [J].
Khireche, S. ;
Boughrara, D. ;
Kadri, A. ;
Hamadou, L. ;
Benbrahim, N. .
CORROSION SCIENCE, 2014, 87 :504-516
[4]  
Koli D.K., 2014, PROCEDIA MAT SCI, V6, P567, DOI DOI 10.1016/J.MSPRO.2014.07.072
[5]   Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as anode for Al-air battery in NaCl solutions [J].
Ma, Jingling ;
Wen, Jiuba ;
Gao, Junwei ;
Li, Quanan .
JOURNAL OF POWER SOURCES, 2014, 253 :419-423
[6]   Effect of Al2O3 Nanoparticles as Reinforcement on the Tensile Behavior of Al-12Si Composites [J].
Ma, Pan ;
Jia, Yandong ;
Gokuldoss, Prashanth Konda ;
Yu, Zhishui ;
Yang, Shanglei ;
Zhao, Jian ;
Li, Chonggui .
METALS, 2017, 7 (09)
[7]   Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing [J].
Schultz, B. F. ;
Ferguson, J. B. ;
Rohatgi, P. K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 530 :87-97
[8]   Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites [J].
Su, Hai ;
Gao, Wenli ;
Feng, Zhaohui ;
Lu, Zheng .
MATERIALS & DESIGN, 2012, 36 :590-596
[9]   Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution [J].
Wang, Bin ;
Zhang, Lunwu ;
Su, Yan ;
Mou, Xianliang ;
Xiao, Yong ;
Liu, Jie .
MATERIALS & DESIGN, 2013, 50 :15-21
[10]   Enhancement of the Mechanical Properties of Aluminum-Graphene Composites [J].
Yolshina, L. A. ;
Muradymov, R., V ;
Vichuzhanin, D., I ;
Smimova, E. O. .
MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2016), 2016, 1785