Robust object detection for autonomous driving based on semi-supervised learning

被引:0
|
作者
Wenwen Chen [1 ]
Jun Yan [1 ]
Weiquan Huang [1 ]
Wancheng Ge [1 ]
Huaping Liu [2 ]
Huilin Yin [1 ]
机构
[1] College of Electronic and Information Engineering, Tongji University
[2] School of Electrical Engineering and Computer Science, Oregon State
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论]; TP391.41 []; U463.6 [电气设备及附件];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ; 080203 ;
摘要
Deep learning based on labeled data has brought massive success in computer vision, speech recognition, and natural language processing. Nevertheless, labeled data is just a drop in the ocean compared with unlabeled data. How can people utilize the unlabeled data efectively? Research has focused on unsupervised and semi-supervised learning to solve such a problem. Some theoretical and empirical studies have proved that unlabeled data can help boost the generalization ability and robustness under adversarial attacks. However, current theoretical research on the relationship between robustness and unlabeled data limits its scope to toy datasets. Meanwhile, the visual models in autonomous driving need a significant improvement in robustness to guarantee security and safety. This paper proposes a semi-supervised learning framework for object detection in autonomous vehicles, improving the robustness with unlabeled data. Firstly, we build a baseline with the transfer learning of an unsupervised contrastive learning method—Momentum Contrast(MoCo). Secondly,we propose a semi-supervised co-training method to label the unlabeled data for retraining,which improves generalization on the autonomous driving dataset. Thirdly, we apply the unsupervised Bounding Box data augmentation(BBAug) method based on a search algorithm, which uses reinforcement learning to improve the robustness of object detection for autonomous driving. We present an empirical study on the KITTI dataset with diverse adversarial attack methods. Our proposed method realizes the state-of-the-art generalization and robustness under white-box attacks(DPatch and Contextual Patch) and black-box attacks(Gaussian noise, Rain, Fog, and so on). Our proposed method and empirical study show that using more unlabeled data benefits the robustness of perception systems in autonomous driving.
引用
收藏
页码:18 / 43
页数:26
相关论文
共 50 条
  • [31] Few-shot Object Detection as a Semi-supervised Learning Problem
    Bailer, Werner
    Fassold, Hannes
    19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 131 - 135
  • [32] Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection
    Liu, Chang
    Zhang, Weiming
    Lin, Xiangru
    Zhang, Wei
    Tan, Xiao
    Han, Junyu
    Li, Xiaomao
    Ding, Errui
    Wang, Jingdong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15579 - 15588
  • [33] Rotation-fused Consistency Semi-supervised Learning for Object Detection
    Xu, Peiyi
    Cui, Lingguo
    Cheng, Zhonghao
    Chai, Senchun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8216 - 8221
  • [34] Tactile Object Recognition with Semi-supervised Learning
    Luo, Shan
    Liu, Xiaozhou
    Althoefer, Kaspar
    Liu, Hongbin
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2015), PT II, 2015, 9245 : 15 - 26
  • [35] Cast Shadow Detection Based on Semi-supervised Learning
    Jarraya, Salma Kammoun
    Boukhriss, Rania Rebai
    Hammami, Mohamed
    Ben-Abdallah, Hanene
    IMAGE ANALYSIS AND RECOGNITION, PT I, 2012, 7324 : 19 - 26
  • [36] Semi-supervised Learning based Fake Review Detection
    Deng, Huaxun
    Zhao, Linfeng
    Luo, Ning
    Liu, Yuan
    Guo, Guibing
    Wang, Xingwei
    Tan, Zhenhua
    Wang, Shuang
    Zhou, Fucai
    2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 1278 - 1280
  • [37] Semi-supervised Object Detection with Unlabeled Data
    Nhu-Van Nguyen
    Rigaud, Christophe
    Burie, Jean-Christophe
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 289 - 296
  • [38] Improving Localization for Semi-Supervised Object Detection
    Rossi, Leonardo
    Karimi, Akbar
    Prati, Andrea
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 516 - 527
  • [39] Label Matching Semi-Supervised Object Detection
    Chen, Binbin
    Chen, Weijie
    Yang, Shicai
    Xuan, Yunyi
    Song, Jie
    Xie, Di
    Pu, Shiliang
    Song, Mingli
    Zhuang, Yueting
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14361 - 14370
  • [40] Semi-supervised Active Salient Object Detection
    Lv, Yunqiu
    Liu, Bowen
    Zhang, Jing
    Dai, Yuchao
    Li, Aixuan
    Zhang, Tong
    PATTERN RECOGNITION, 2022, 123