The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g-1).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g-1),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.