Multispectral Imaging and Spectral Unmixing for Characterization of Relative Phase Composition of Steel Corrosion Products

被引:1
作者
Egodawela, Shamendra [1 ]
Gostar, Amirali K. [1 ]
Buddika, H. A. D. Samith [2 ]
Harischandra, Nalin [2 ]
Abeykoon, Dammika [2 ]
White, Paul A. [1 ]
Mahmoodian, Mojtaba [1 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[2] Univ Peradeniya, Fac Engn, Peradeniya 20442, Sri Lanka
基金
澳大利亚研究理事会;
关键词
Deep learning; spectral imaging (SI); spectral unmixing (SU); steel corrosion; IRON-OXIDE NANOPARTICLES; CARBON-STEEL; LIGHT-SOURCE; RIETVELD; XRD;
D O I
10.1109/JSEN.2024.3428472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The integrity of steel structures is significantly impacted by corrosion, necessitating precise assessment methods. This study introduces an innovative approach using multispectral imaging (MSI) and spectral unmixing (SU) to analyze the relative composition of corrosion phases such as Lepidocrocite, Magnetite, Goethite, and Hematite on steel samples. We developed a specialized MSI setup covering the visible to near-infrared (NIR) spectrum and evaluated various linear and nonlinear SU techniques. Our findings reveal the high accuracy and efficiency of the MSI and SU systems in determining corrosion phase distribution and composition. This method was rigorously validated against X-ray diffraction (XRD) and Rietveld analyses, affirming its potential as a nondestructive, widespan tool for corrosion assessment. These results have significant implications for improving the longevity and safety of steel structures through more precise corrosion monitoring.
引用
收藏
页码:37879 / 37893
页数:15
相关论文
共 56 条
[1]   An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres [J].
Alcantara, J. ;
Chico, B. ;
Simancas, J. ;
Diaz, I. ;
de la Fuente, D. ;
Morcillo, M. .
MATERIALS CHARACTERIZATION, 2016, 118 :65-78
[2]  
[Anonymous], 2024, BFS-U3-20S4-Datasheet
[3]  
[Anonymous], 2004, British Standard BS EN 10025-5:2004
[4]   Mobile Hyperspectral Imaging for Material Surface Damage Detection [J].
Aryal, Sameer ;
Chen, ZhiQiang ;
Tang, Shimin .
JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2021, 35 (01)
[5]   Validation of multispectral imaging for the detection of selected adulterants in turmeric samples [J].
Bandara, Wele Gedara Chaminda ;
Prabhath, Gode Withanage Kasun ;
Dissanayake, Dissanayake Walawwe Sahan Chinthana Bandara ;
Herath, Vijitha Rohana ;
Godaliyadda, Gunawath Mudiyanselage Roshan Indika ;
Ekanayake, Mervyn Parakrama Bandara ;
Demini, Dhanushika ;
Madhujith, Terrence .
JOURNAL OF FOOD ENGINEERING, 2020, 266
[6]   Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network [J].
Bangaru, Srikanth Sagar ;
Wang, Chao ;
Zhou, Xu ;
Hassan, Marwa .
AUTOMATION IN CONSTRUCTION, 2022, 144
[7]   Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes [J].
Bastidas-Arteaga, Emilio ;
Bressolette, Philippe ;
Chateauneuf, Alaa ;
Sanchez-Silva, Mauricio .
STRUCTURAL SAFETY, 2009, 31 (01) :84-96
[8]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[9]  
Brandenburg K., 2022, Match! Phase Analysis using Powder Diffraction
[10]  
Catelli E., 2018, J. Spectral Imag., V7, pa10