LIO-SAM plus plus : A Lidar-Inertial Semantic SLAM with Association Optimization and Keyframe Selection

被引:0
作者
Shen, Bingke [1 ,2 ]
Xie, Wenming [1 ,2 ]
Peng, Xiaodong [1 ,2 ,3 ]
Qiao, Xiaoning [1 ,2 ]
Guo, Zhiyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
关键词
lidar-inertial SLAM; semantic information; association optimization; keyframe selection; VERSATILE; ROBUST;
D O I
10.3390/s24237546
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Current lidar-inertial SLAM algorithms mainly rely on the geometric features of the lidar for point cloud alignment. The issue of incorrect feature association arises because the matching process is susceptible to influences such as dynamic objects, occlusion, and environmental changes. To address this issue, we present a lidar-inertial SLAM system based on the LIO-SAM framework, combining semantic and geometric constraints for association optimization and keyframe selection. Specifically, we mitigate the impact of erroneous matching points on pose estimation by comparing the consistency of normal vectors in the surrounding region. Additionally, we incorporate semantic information to establish semantic constraints, further enhancing matching accuracy. Furthermore, we propose an adaptive selection strategy based on semantic differences between frames to improve the reliability of keyframe generation. Experimental results on the KITTI dataset indicate that, compared to other systems, the accuracy of the pose estimation has significantly improved.
引用
收藏
页数:18
相关论文
共 21 条
[1]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[2]  
Chen XYL, 2019, IEEE INT C INT ROBOT, P4530, DOI 10.1109/IROS40897.2019.8967704
[3]   LiDAR Odometry and Mapping Based on Semantic Information for Outdoor Environment [J].
Du, Shitong ;
Li, Yifan ;
Li, Xuyou ;
Wu, Menghao .
REMOTE SENSING, 2021, 13 (15)
[4]   Direct Sparse Odometry [J].
Engel, Jakob ;
Koltun, Vladlen ;
Cremers, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) :611-625
[5]  
Forster C, 2014, IEEE INT CONF ROBOT, P15, DOI 10.1109/ICRA.2014.6906584
[6]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[7]   A LiDAR SLAM With PCA-Based Feature Extraction and Two-Stage Matching [J].
Guo, Shiyi ;
Rong, Zheng ;
Wang, Shuo ;
Wu, Yihong .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[8]   Robust Odometry and Mapping for Multi-LiDAR Systems With Online Extrinsic Calibration [J].
Jiao, Jianhao ;
Ye, Haoyang ;
Zhu, Yilong ;
Liu, Ming .
IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (01) :351-371
[9]  
Kuo J., 2020, P 2020 IEEE INT C RO
[10]   SA-LOAM: Semantic-aided LiDAR SLAM with Loop Closure [J].
Li, Lin ;
Kong, Xin ;
Zhao, Xiangrui ;
Li, Wanlong ;
Wen, Feng ;
Zhang, Hongbo ;
Liu, Yong .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :7627-7634