Anisotropy effects on crack path formation at atomistic-continuum scales

被引:0
|
作者
Hao, Tengyuan [1 ]
Hossain, Zubaer M. [1 ]
机构
[1] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30318 USA
关键词
FRACTURE; DAMAGE; MODEL; VISCOPLASTICITY; DEFORMATION; PROPAGATION; SUPERALLOYS; PLASTICITY; PREDICTION; GROWTH;
D O I
10.1063/5.0236938
中图分类号
O59 [应用物理学];
学科分类号
摘要
Crystallographic and structural anisotropies are essential in governing the direction of crack propagation, particularly for brittle materials and their composites. However, capturing their combined effects and relative influence on crack-path formation at atomistic-continuum scales remains challenging. This paper presents a multiscale framework to determine the role of crystallographic anisotropy in controlling fracture in 3C-SiC and its composites. This framework decomposes the continuum media into a collection of "crystal-symmetry preserved sub-domains" (CSPS) before finite element discretization. Interactions and continuum scale behavior of the CSPS are described by continuum scale parameters determined from atomistic simulations. The framework reproduces all essential features of the atomic scale fracture, including bifurcation, arrest, renucleation, deflection, and penetration. Results reveal that "crystallographic anisotropy" controls the local anisotropy in the propagation pathway, whereas "structural anisotropy" controls the path deviation from the symmetry plane. The fracture pattern emerges from a competition between structural and crystallographic anisotropy effects and long-range elastic interactions among the stress-concentration sites. The underlying physics in high-symmetry configurations is well-explainable using "bifurcation diagrams."
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Atomistic-Continuum theory of graphene fracture for opening mode crack
    Huang, Kun
    Wu, Jiye
    Yin, Yajun
    Xu, Wei
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 268
  • [2] Hybrid atomistic-continuum fluid mechanics
    Werder, T
    Walther, JH
    Kotsalis, E
    Gonnet, P
    Koumoutsakos, P
    NSTI NANOTECH 2004, VOL 3, TECHNICAL PROCEEDINGS, 2004, : 80 - 83
  • [3] A perspective on atomistic-continuum multiscale modeling
    Curtin, William A.
    Miller, Ronald E.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2017, 25 (07)
  • [4] Atomistic-continuum coupling of random alloys
    Nag, Shankha
    Junge, Till
    Curtin, W. A.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2019, 27 (07)
  • [5] A damping boundary condition for atomistic-continuum coupling
    张杰
    Kiet Tieu
    Guillaume Michal
    朱洪涛
    张亮
    苏利红
    邓关宇
    王辉
    ChinesePhysicsB, 2017, 26 (06) : 508 - 515
  • [6] On a formulation for a multiscale atomistic-continuum homogenization method
    Chung, PW
    Narnburu, RR
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (10) : 2563 - 2588
  • [7] PyCAC: The concurrent atomistic-continuum simulation environment
    Xu, Shuozhi
    Payne, Thomas G.
    Chen, Hao
    Liu, Yongchao
    Xiong, Liming
    Chen, Youping
    McDowell, David L.
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (07) : 857 - 871
  • [8] Coupled atomistic-continuum simulations of nucleate boiling
    Gennari, Gabriele
    Smith, Edward R.
    Pringle, Gavin J.
    Magnini, Mirco
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 200
  • [9] Concurrent atomistic-continuum modeling of crystalline materials
    Chen, Youping
    Shabanov, Sergei
    McDowell, David L.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (10)
  • [10] PyCAC: The concurrent atomistic-continuum simulation environment
    Shuozhi Xu
    Thomas G. Payne
    Hao Chen
    Yongchao Liu
    Liming Xiong
    Youping Chen
    David L. McDowell
    Journal of Materials Research, 2018, 33 : 857 - 871