共 54 条
- [31] Kuech F., Mabande E., Enzner G., State-space architecture of the partitioned- block-based acoustic echo controller, Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 1295-1299, (2014)
- [32] Haubner T., Brendel A., Kellermann W., End-to-end deep learning-based adaptation control for linear acoustic echo cancellation, IEEE/ACM Trans. Audio, Speech, Language Process., 32, pp. 227-238, (2024)
- [33] Yang D., Jiang F., Wu W., Fang X., Cao M., Low-complexity acoustic echo cancellation with neural Kalman filtering, Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 7846-7850, (2023)
- [34] Zhang Y., Yu M., Zhang H., Yu D., Wang D., NeuralKalman: A learnable Kalman filter for acoustic echo cancellation, (2023)
- [35] Zhang H., Kandadai S., Rao H., Kim M., Pruthi T., Kristjansson T., Deep adaptive AEC: Hybrid of deep learning and adaptive acoustic echo cancellation, Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 756-760, (2022)
- [36] Mack W., Habets E.A.P., Deep filtering: Signal extraction and reconstruction using complex time-frequency filters, IEEE Signal Process. Lett., 27, pp. 61-65, (2020)
- [37] Purin M., Sootla S., Sponza M., Saabas A., Cutler R., AECMOS: A speech quality assessment metric for echo impairment, Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 901-905, (2022)
- [38] Corrigendum 1: Wideband Extension to Rec. P.862 for the Assessment of Wideband Telephone Networks and Speech Codecs, (2017)
- [39] Taal C.H., Hendriks R.C., Heusdens R., Jensen J., An algorithm for intelligibility prediction of time-frequency weighted noisy speech, IEEE/ACM Trans. Audio, Speech, Language Process., 19, 7, pp. 2125-2136, (2011)
- [40] Paszke A., Et al., PyTorch: An imperative style, high-performance deep learning library, Proc. Adv. Neural Inf. Process. Syst. 32 (NeurIPS), pp. 8024-8035, (2019)