Investigating the use of signal detection information in supervised learning-based image denoising with consideration of task-shift

被引:1
作者
Li, Kaiyan [1 ]
Li, Hua [1 ,2 ]
Anastasio, Mark A. [1 ]
机构
[1] Univ Illinois Champaign Urbana, Dept Bioengn, Urbana, IL 61820 USA
[2] Washington Univ, Sch Med St Louis, Dept Radiat Oncol, St Louis, MO 63110 USA
基金
美国国家卫生研究院;
关键词
objective image quality assessment; image restoration; image denoising; deep learning; DEEP NEURAL-NETWORK; IDEAL-OBSERVER; HOTELLING OBSERVER; CT; NOISE; PERFORMANCE; REDUCTION;
D O I
10.1117/1.JMI.11.5.055501
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Recently, learning-based denoising methods that incorporate task-relevant information into the training procedure have been developed to enhance the utility of the denoised images. However, this line of research is relatively new and underdeveloped, and some fundamental issues remain unexplored. Our purpose is to yield insights into general issues related to these task-informed methods. This includes understanding the impact of denoising on objective measures of image quality (IQ) when the specified task at inference time is different from that employed for model training, a phenomenon we refer to as "task-shift." Approach: A virtual imaging test bed comprising a stylized computational model of a chest X-ray computed tomography imaging system was employed to enable a controlled and tractable study design. A canonical, fully supervised, convolutional neural network-based denoising method was purposely adopted to understand the underlying issues that may be relevant to a variety of applications and more advanced denoising or image reconstruction methods. Signal detection and signal detection-localization tasks under signal-known-statistically with background-known-statistically conditions were considered, and several distinct types of numerical observers were employed to compute estimates of the task performance. Studies were designed to reveal how a task-informed transfer-learning approach can influence the tradeoff between conventional and task-based measures of image quality within the context of the considered tasks. In addition, the impact of task-shift on these image quality measures was assessed. Results :The results indicated that certain tradeoffs can be achieved such that the resulting AUC value was significantly improved and the degradation of physical IQ measures was statistically insignificant. It was also observed that introducing task-shift degrades the task performance as expected. The degradation was significant when a relatively simple task was considered for network training and observer performance on a more complex one was assessed at inference time. Conclusions: The presented results indicate that the task-informed training method can improve the observer performance while providing control over the tradeoff between traditional and task-based measures of image quality. The behavior of a task-informed model fine-tuning procedure was demonstrated, and the impact of task-shift on task-based image quality measures was investigated.
引用
收藏
页数:20
相关论文
共 48 条
[1]   Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability [J].
Abbey, CK ;
Barrett, HH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (03) :473-488
[2]   Task adapted reconstruction for inverse problems [J].
Adler, Jonas ;
Lunz, Sebastian ;
Verdier, Olivier ;
Schonlieb, Carola-Bibiane ;
Oktem, Ozan .
INVERSE PROBLEMS, 2022, 38 (07)
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]  
Ba J, 2014, ACS SYM SER
[5]  
Barrett H.H., 2013, Foundations of image science
[6]   MODEL OBSERVERS FOR ASSESSMENT OF IMAGE QUALITY [J].
BARRETT, HH ;
YAO, J ;
ROLLAND, JP ;
MYERS, KJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) :9758-9765
[7]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[8]  
Chen H, 2017, I S BIOMED IMAGING, P143
[9]  
Chollet F., 2015, Keras
[10]   Estimation receiver operating characteristic curve and ideal observers for combined detection/estimation tasks [J].
Clarkson, Eric .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (12) :B91-B98