Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning

被引:0
作者
Hu, Wei [1 ]
Mi, Ning [2 ]
Wu, Shuang [3 ]
Zhang, Huiling [2 ]
Hu, Zhewen [4 ]
Zhang, Lei [4 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] State Grid Ningxia Elect Power Co Ltd, Yinchuan 750001, Ningxia, Peoples R China
[3] State Grid Corp China, North China Branch, Beijing 100053, Peoples R China
[4] China Three Gorges Univ, Coll Elect Engn & New Energy, Yichang 443002, Hubei, Peoples R China
来源
IENERGY | 2024年 / 3卷 / 04期
关键词
Training; Markov decision processes; Decision making; Power distribution; Power system stability; Deep reinforcement learning; Stability analysis; Mathematical models; Optimization; Load flow; Operation mode adjustment; double Q network learning; region mapping; deep reinforcement learning;
D O I
10.23919/IEN.2024.0028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Power flow adjustment is a sequential decision problem. The operator makes decisions to ensure that the power flow meets the system's operational constraints, thereby obtaining a typical operating mode power flow. However, this decision-making method relies heavily on human experience, which is inefficient when the system is complex. In addition, the results given by the current evaluation system are difficult to directly guide the intelligent power flow adjustment. In order to improve the efficiency and intelligence of power flow adjustment, this paper proposes a power flow adjustment method based on deep reinforcement learning. Combining deep reinforcement learning theory with traditional power system operation mode analysis, the concept of region mapping is proposed to describe the adjustment process, so as to analyze the process of power flow calculation and manual adjustment. Considering the characteristics of power flow adjustment, a Markov decision process model suitable for power flow adjustment is constructed. On this basis, a double Q network learning method suitable for power flow adjustment is proposed. This method can adjust the power flow according to the set adjustment route, thus improving the intelligent level of power flow adjustment. The method in this paper is tested on China Electric Power Research Institute (CEPRI) test system.
引用
收藏
页码:252 / 260
页数:9
相关论文
共 50 条
  • [21] Parallel deep reinforcement learning-based power flow state adjustment considering static stability constraint
    Wang Tianjing
    Tang Yong
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (25) : 6276 - 6284
  • [22] Intelligent Control of Manipulator Based on Deep Reinforcement Learning
    Zhou, Jiangtao
    Zheng, Hua
    Zhao, Dongzhu
    Chen, Yingxue
    2021 12TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING (ICMAE), 2021, : 275 - 279
  • [23] Power System Security Correction Control Based on Deep Reinforcement Learning
    Wang Y.
    Li L.
    Yu Y.
    Yang N.
    Liu M.
    Li T.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (12): : 121 - 129
  • [24] Deep Neural Network-Based Surrogate Model for Optimal Component Sizing of Power Converters Using Deep Reinforcement Learning
    Bui, Van-Hai
    Chang, Fangyuan
    Su, Wencong
    Wang, Mengqi
    Murphey, Yi Lu
    Da Silva, Felipe Leno
    Huang, Can
    Xue, Lingxiao
    Glatt, Ruben
    IEEE ACCESS, 2022, 10 : 78702 - 78712
  • [25] Power System Fault Diagnosis Method Based on Deep Reinforcement Learning
    Wang, Zirui
    Zhang, Ziqi
    Zhang, Xu
    Du, Mingxuan
    Zhang, Huiting
    Liu, Bowen
    ENERGIES, 2022, 15 (20)
  • [26] Joint Topology Construction and Power Adjustment for UAV Networks: A Deep Reinforcement Learning Based Approach
    Wenjun
    Huangchun Lei
    Jin Shang
    中国通信, 2021, 18 (07) : 265 - 283
  • [27] Deep reinforcement learning-based operation of fast charging stations coupled with energy storage system
    Hussain, Akhtar
    Bui, Van-Hai
    Kim, Hak-Man
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 210
  • [28] A Novel Deep Reinforcement Learning Based Framework for Gait Adjustment
    Li, Ang
    Chen, Jianping
    Fu, Qiming
    Wu, Hongjie
    Wang, Yunzhe
    Lu, You
    MATHEMATICS, 2023, 11 (01)
  • [29] Joint Topology Construction and Power Adjustment for UAV Networks: A Deep Reinforcement Learning Based Approach
    Xu, Wenjun
    Lei, Huangchun
    Shang, Jin
    CHINA COMMUNICATIONS, 2021, 18 (07) : 265 - 283
  • [30] Deep reinforcement learning for intelligent risk optimization of buildings under hazard
    Anwar, Ghazanfar Ali
    Zhang, Xiaoge
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 247