共 50 条
Sub-ambient water wettability of hydrophilic and hydrophobic SiO2 surfaces
被引:1
|作者:
Liu, Jianghui
[1
]
Cao, Haishan
[1
]
机构:
[1] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
基金:
北京市自然科学基金;
中国国家自然科学基金;
关键词:
MOLECULAR-DYNAMICS;
CONTACT ANGLES;
CARBON-DIOXIDE;
SILICA;
SIMULATIONS;
TEMPERATURE;
CONTAMINATION;
HYDROXYLATION;
TRANSITION;
DEPENDENCE;
D O I:
10.1063/5.0236994
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The wettability of SiO2 surfaces, crucial for understanding the phase transition processes of water, remains a topic of significant controversy in the literature due to uncertainties in experiments. Molecular dynamics (MD) simulations offer a promising avenue for elucidating these complexities, yet studies specifically addressing water contact angles on hydrophilic and hydrophobic SiO2 surfaces at sub-ambient temperatures are notably absent. In this study, we experimentally measured water contact angles of hydrophilic and hydrophobic SiO2 surfaces at ambient temperature and employed MD to investigate water contact angles on Q3, Q3/Q4, and Q4 SiO2 surfaces across temperatures ranging from 220 to 300 K. We investigated the effects of the distribution of hydroxyl groups, droplet size, and hydroxyl density and found that the hydroxyl density had the largest impact on contact angle. Moreover, hydrogen bond analysis uncovered enhanced water affinities of Q3 and Q3/Q4 SiO2 surfaces at lower temperatures, and the spreading rate of precursor films reduced with decreasing temperature. This comprehensive study sheds light on the intricate interaction between surface properties and water behavior, promoting our understanding of the wettability of SiO2 surfaces.
引用
收藏
页数:12
相关论文