Exergy and techno-economic evaluation of solar-driven coal gasification coupled CLHG cogeneration system

被引:0
|
作者
Li, Jie [1 ]
Zhu, Lin [1 ]
Huang, Yue [1 ]
Hao, Qiang [1 ]
Zeng, Xingyan [1 ]
Zhang, Chaoli [1 ]
机构
[1] Southwest Petr Univ, Sch Chem & Chem Engn, Key Lab Gas Proc Engn, Chengdu 610500, Peoples R China
关键词
Solar energy; Coal gasification; Chemical looping hydrogen generation (CLHG); Exergy; Techno-economic; CHEMICAL LOOPING COMBUSTION; CIRCULATING FLUIDIZED-BED; THERMODYNAMIC ANALYSIS; POWER-GENERATION; POLYGENERATION SYSTEM; HYDROGEN-PRODUCTION; FOSSIL POWER; ENERGY; METHANOL; PLANT;
D O I
10.1016/j.seta.2024.104008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To diversify the energy supply for the gasification process, as well as to improve the high carbon emission problem of coal combustion for heat supply in the conventional gasification process and to improve the performance of the gasification system, this work proposes a solar/autothermal gasification coupled with a chemical looping hydrogen generation (CLHG) system for the stable production of pure hydrogen and electricity with lowenergy CO2 capture. To evaluate and optimize the system more intuitively, a comprehensive exergy distribution analysis of the proposed system was carried out. The results show that the proposed system can achieve 47 % and 45.68% of energy efficiency and exergy efficiency, and the exergy loss mainly comes from the solar collector and chemical looping reactor, which occupy 60.1 % and 21.3 % of the total exergy loss, respectively, and optimization recommendations are given. Analysis of the direct nominal irradiance (DNI) shows that the system has a carbon capture rate (CCR) of 97.6 % and a fuel energy savings rate (FESR) of 53.7 % which is 16.7% higher than the reference system. The techno-economic analysis shows that the proposed system can achieve a levelized hydrogen cost of 1.71 $/kg, which validates the economic feasibility of the solar hydrogen production system.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A techno-economic review of solar-driven multi-effect distillation
    Alhaj, Mohamed
    Hassan, Ashraf
    Darwish, Mohamed
    Al-Ghamdi, Sami G.
    DESALINATION AND WATER TREATMENT, 2017, 90 : 86 - 98
  • [2] Techno-economic analysis of novel power generation system based on coal partial gasification technology
    Ye, Chao
    Wang, Qinhui
    Luo, Zhongyang
    Fang, Mengxiang
    Cen, Kefa
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2019, 14 (06)
  • [3] Techno-economic analysis of solar-driven co-electrolysis for renewable methanol production using SOEC
    Khan, Muhammad Sajid
    Lin, Zihan
    Lin, Liangrui
    Abid, Muhammad
    Ali, Hafiz Muhammad
    Chen, Chen
    ENERGY CONVERSION AND MANAGEMENT, 2024, 302
  • [4] Techno-economic assessment of solar-driven ejector refrigeration system assisted with daytime radiative condenser
    Yadav, Vinay Kumar
    Bijarniya, Jay Prakash
    Sarkar, Jahar
    Ghosh, Pradyumna
    ENERGY CONVERSION AND MANAGEMENT, 2024, 301
  • [5] Techno-economic analysis of methanol and electricity poly-generation system based on coal partial gasification
    Ye, Chao
    Wang, Qinhui
    Zheng, Youqu
    Li, Guoneng
    Zhang, Zhiguo
    Luo, Zhongyang
    ENERGY, 2019, 185 : 624 - 632
  • [6] Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system
    Men, Yukui
    Liang, Caihang
    Hu, Jiali
    Zhang, Rui
    He, Zhipeng
    Zeng, Si
    Sun, Tiezhu
    Chen, Bo
    RENEWABLE ENERGY, 2023, 217
  • [7] Assessment of a solar-driven cogeneration system for electricity and desalination
    Rafiei, Alireza
    Loni, Reyhaneh
    Najafi, Gholamhassan
    Mahadzir, Shuhaimi B.
    Bellos, Evangelos
    Sharifpur, Mohsen
    Mazlan, Mohamed
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 145 (03) : 1711 - 1731
  • [8] Techno-Economic Optimization of Medium Temperature Solar-Driven Subcritical Organic Rankine Cycle
    Roumpedakis, Tryfon C.
    Fostieris, Nikolaos
    Braimakis, Konstantinos
    Monokrousou, Evropi
    Charalampidis, Antonios
    Karellas, Sotirios
    THERMO, 2021, 1 (01): : 77 - 105
  • [9] A techno-economic evaluation of utility scale solar power generation
    Shakeel, Mohammad Raghib
    Mokheimer, Esmail M. A.
    ENERGY, 2022, 261
  • [10] Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems
    Lin, Meng
    Haussener, Sophia
    SOLAR ENERGY, 2017, 155 : 1389 - 1402