Enhanced microvascular imaging through deep learning-driven OCTA reconstruction with squeeze-and-excitation block integration

被引:0
|
作者
Rashidi, Mohammad [1 ,2 ]
Kalenkov, Georgy [1 ,2 ]
Green, Daniel J. [3 ]
McLaughlin, Robert A. [1 ,2 ,4 ]
机构
[1] Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide,SA,5005, Australia
[2] Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide,SA,5005, Australia
[3] School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Crawley,WA,6009, Australia
[4] School of Engineering, The University of Western Australia, Crawley,WA,6009, Australia
来源
Biomedical Optics Express | / 15卷 / 10期
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会;
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Deep neural networks - Optical tomography
引用
收藏
页码:5592 / 5608
相关论文
共 6 条
  • [1] Enhanced microvascular imaging through deep learning-driven OCTA reconstruction with squeeze-and-excitation block integration
    Rashidi, Mohammad
    Kalenkov, Georgy
    Green, Daniel J.
    McLaughlin, Robert A.
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (10): : 5592 - 5608
  • [2] Strawberry Disease Detection Through an Advanced Squeeze-and-Excitation Deep Learning Model
    Wu, Jiayi
    Abolghasemi, Vahid
    Anisi, Mohammad Hossein
    Dar, Usman
    Ivanov, Andrey
    Newenham, Chris
    IEEE Transactions on AgriFood Electronics, 2024, 2 (02): : 259 - 267
  • [3] Deep learning-driven feature engineering for lung disease classification through electrical impedance tomography imaging
    Cansiz, Berke
    Kilinc, Coskuvar Utkan
    Serbes, Gorkem
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [4] Enhancing plant disease detection through deep learning: a Depthwise CNN with squeeze and excitation integration and residual skip connections
    Ashurov, Asadulla Y.
    Al-Gaashani, Mehdhar S. A. M.
    Samee, Nagwan A.
    Alkanhel, Reem
    Atteia, Ghada
    Abdallah, Hanaa A.
    Muthanna, Mohammed Saleh Ali
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [5] Deep learning-driven super-resolution in Raman hyperspectral imaging: Efficient high-resolution reconstruction from low-resolution data
    Ul Haque, Md Inzamam
    Lebron, Ariel
    Alvarez, Frances Joan D.
    Neal, Jennifer F.
    Mamak, Marc
    Mukherjee, Debangshu
    Ovchinnikova, Olga S.
    Hinkle, Jacob D.
    APPLIED PHYSICS LETTERS, 2024, 125 (20)
  • [6] Physics-Driven Deep Learning Methods for Fast Quantitative Magnetic Resonance Imaging: Performance improvements through integration with deep neural networks
    Zhu, Yanjie
    Cheng, Jing
    Cui, Zhuo-Xu
    Zhu, Qingyong
    Ying, Leslie
    Liang, Dong
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (02) : 116 - 128