Interpenetrating gelatin/alginate mixed hydrogel: The simplest method to prepare an autoclavable scaffold

被引:3
作者
Mori, Hideki [1 ]
Taketsuna, Yaya [1 ]
Shimogama, Kae [1 ]
Nishi, Koki [1 ]
Hara, Masayuki [1 ]
机构
[1] Osaka Metropolitan Univ, Grad Sch Sci, Dept Biol Chem, 1-2 Gakuen Cho,Naka Ku, Sakai, Osaka 5998570, Japan
关键词
Gelatin; Hydrogel; Alginate; Scaffold; Young's modulus; Autoclavable; Cell culture; Tissue engineering; Sterilization; ALGINATE GELS; COLLAGEN; GELATIN; SCALE;
D O I
10.1016/j.jbiosc.2024.01.015
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The choice of sterilization method for hydrogels used for cell culture influences the ease of preparing the gel. We prepared interpenetrating gelatin/calcium alginate hydrogels containing 1% (w/v) alginate and 1-16% (w/v) gelatin by molding with the mixture of gelatin/sodium alginate solution, followed by the addition of calcium ions by incubation in calcium chloride solution. It is the simplest method to prepare autoclavable gelatin/sodium hydrogel. We measured various properties of the hydrogels including volume, Young's modulus in the compression test, storage modulus, and loss modulus in the dynamic viscoelasticity measurement. The gelatin/alginate hydrogel can be easily fabricated into any shape by this method. After autoclave treatment, the hydrogel was shrunk to smaller than the original shape in similar figures. The shape of the gelatin/alginate hydrogel can be designed into any shape with the reduction ratio of the volume. Human osteosarcoma (HOS) cells adhered to the gelatin/alginate hydrogel and then proliferated. Gelatin/calcium alginate hydrogels with a high concentration are considered to be autoclavable culture substrates because of their low deformation and gelatin elution rate after autoclaving and the high amount of cells attached to the hydrogels. (c) 2024, The Society for Biotechnology, Japan. All rights reserved.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 40 条
[1]   Phase behaviour and structure formation of alginate-gelatin composite gels [J].
Baether, Sabrina ;
Seibt, Jasper Hartwig ;
Hundschell, Christoph Simon ;
Bonilla, Jose C. ;
Clausen, Mathias Porsmose ;
Wagemans, Anja Maria .
FOOD HYDROCOLLOIDS, 2024, 149
[2]   Radiation-induced cross-linking of gelatin by using γ-rays:: Insoluble gelatin hydrogel formation [J].
Bessho, Masahiko ;
Kojima, Takao ;
Okuda, Shuichi ;
Hara, Masayuki .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2007, 80 (05) :979-985
[3]   Additive manufacturing of natural biopolymers and composites for bone tissue engineering [J].
Bose, Susmita ;
Koski, Caitlin ;
Vu, Ashley A. .
MATERIALS HORIZONS, 2020, 7 (08) :2011-2027
[4]   Rheological monitoring of polyacrylamide gelation: Importance of cross-link density and temperature [J].
Calvet, D ;
Wong, JY ;
Giasson, S .
MACROMOLECULES, 2004, 37 (20) :7762-7771
[5]   An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting [J].
Chen, Qiuhong ;
Tian, Xiaohong ;
Fan, Jun ;
Tong, Hao ;
Ao, Qiang ;
Wang, Xiaohong .
MOLECULES, 2020, 25 (03)
[6]   Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks [J].
Dhand, Abhishek P. ;
Galarraga, Jonathan H. ;
Burdick, Jason A. .
TRENDS IN BIOTECHNOLOGY, 2021, 39 (05) :519-538
[7]   Enzyme-catalyzed phase transition of alginate gels and gelatin-alginate interpenetrated networks [J].
Doumeche, Bastien ;
Picard, Julien ;
Larreta-Garde, Veronique .
BIOMACROMOLECULES, 2007, 8 (11) :3613-3618
[8]  
DRAGET KI, 1990, CARBOHYD POLYM, V14, P159
[9]   Structural basis of collagen recognition by integrin α2β1 [J].
Emsley, J ;
Knight, CG ;
Farndale, RW ;
Barnes, MJ ;
Liddington, RC .
CELL, 2000, 101 (01) :47-56
[10]   BIOLOGICAL INTERACTIONS BETWEEN POLYSACCHARIDES AND DIVALENT CATIONS - EGG-BOX MODEL [J].
GRANT, GT ;
MORRIS, ER ;
REES, DA ;
SMITH, PJC ;
THOM, D .
FEBS LETTERS, 1973, 32 (01) :195-198