Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification

被引:0
|
作者
Atik, Saziye Ozge [1 ]
Atik, Muhammed Enes [1 ]
机构
[1] Istanbul Tech Univ, Dept Geomat Engn, Fac Civil Engn, Maslak, Turkiye
关键词
hyperspectral image classification; explainable artificial intelligence; Shapley additive explanations; permutation feature importance; machine learning; feature selection; CONVOLUTIONAL NEURAL-NETWORK; FEATURE-EXTRACTION; PCA;
D O I
10.1117/1.JRS.18.042604
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Classification of complex and large hyperspectral images (HSIs) with machine learning (ML) algorithms is an important research area. Recently, explainable artificial intelligence (XAI), which helps to explain and interpret black-box ML algorithms, has become popular. Our study aims to present extensive research on the use of XAI methods in explaining the band effect in HSI classification and the impact of reducing the high band number of HSIs by feature selection on the performance of the classifiers. The importance levels of the spectral bands that are effective in the decisions of the different ML classifiers were examined with the deep reinforcement learning and XAI methods, such as Shapley additive explanations (SHAP) and permutation feature importance (PFI). Our work selects representative bands using SHAP and PFI as XAI analysis techniques. We evaluated the XAI-based band selection performance on three publicly available HSI datasets using random forest, light gradient-boosting machine, and extreme gradient boosting classifier algorithms. The results obtained by applying XAI and deep learning methods were used to select spectral bands. Additionally, principal component analysis, a common dimension reduction technique, was performed on the dataset used in our study. Comparable performance evaluation shows that XAI-based methods choose informative bands and outperform other methods in the subsequent tasks. Thus the global and class-based effects of spectral bands can be explained, and the performance of classifiers can be improved by eliminating features that have a negative impact on classification. In HSI classification, studies examining the decisions of ML classifiers using XAI techniques are limited. Our study is one of the pioneer studies in the usage of XAI in HSI classification.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Malaria cell image classification by explainable artificial intelligence
    Raihan, Md Johir
    Nahid, Abdullah-Al
    HEALTH AND TECHNOLOGY, 2022, 12 (01) : 47 - 58
  • [32] Malaria cell image classification by explainable artificial intelligence
    Md. Johir Raihan
    Abdullah-Al Nahid
    Health and Technology, 2022, 12 : 47 - 58
  • [33] A Correlation based Band Selection Approach for Hyperspectral Image Classification
    Sarmah, Sonia
    Kalita, Sanjib Kumar
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC), 2016, : 271 - 274
  • [34] Firefly-Algorithm-Inspired Framework With Band Selection and Extreme Learning Machine for Hyperspectral Image Classification
    Su, Hongjun
    Cai, Yue
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (01) : 309 - 320
  • [35] Aerial Image Classification in Post Flood Scenarios Using Robust Deep Learning and Explainable Artificial Intelligence
    Manaf, Abdul
    Mughal, Nimra
    Talpur, Kazim Raza
    Talpur, Bandeh Ali
    Mujtaba, Ghulam
    Talpur, Samar Raza
    IEEE ACCESS, 2025, 13 : 35973 - 35984
  • [36] Active learning-based hyperspectral image classification: a reinforcement learning approach
    Patel, Usha
    Patel, Vibha
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 2461 - 2486
  • [37] Active learning-based hyperspectral image classification: a reinforcement learning approach
    Usha Patel
    Vibha Patel
    The Journal of Supercomputing, 2024, 80 : 2461 - 2486
  • [38] Band Subset Selection for Hyperspectral Image Classification
    Yu, Chunyan
    Song, Meiping
    Chang, Chein-I
    REMOTE SENSING, 2018, 10 (01):
  • [39] Representative band selection for hyperspectral image classification
    Yang, Ronglu
    Su, Lifan
    Zhao, Xibin
    Wan, Hai
    Sun, Jiaguang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 48 : 396 - 403
  • [40] Representative Band Selection for Hyperspectral Image Classification
    Xie, Fuding
    Li, Fangfei
    Lei, Cunkuan
    Ke, Lina
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (09)