Monodisperse and homogeneous SiCNO/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries

被引:0
作者
Wang, Deshuo [1 ]
Xia, Xin [1 ]
Li, Yihan [1 ]
Sun, Jingjiang [1 ]
He, Jianjiang [1 ]
Wang, Qingfu [1 ]
Zhao, Wei [1 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Polymer Sci & Engn, Key Lab Rubber Plast, Minist Educ, Zhengzhou Rd 53, Qingdao 266042, Peoples R China
关键词
Silicon-carbon negative electrode; Silicon nitride; Phenolic resin; Nitrogen doping; POLYMER-DERIVED CERAMICS; NITROGEN-DOPED CARBON; POROUS CARBON; C ANODE; PERFORMANCE; STORAGE; NANOPARTICLES; SIZE;
D O I
10.1016/j.apsusc.2025.162574
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon suboxide (SiOx, x < 2) shows promise as an anode material for lithium-ion batteries due to its high lithium-ion storage capacity. However, its low conductivity and substantial volume changes, similar to those observed in monolithic silicon, restrict its practical application. To address these challenges, this study focuses on designing and synthesizing SiCNO/C composite materials. Employing the St & ouml;ber sol-gel method, organopolysilazane oligomers (OPSZ) and resorcinol formaldehyde resin (RF) are co-hydrolyzed and condensed to create uniform OPSZ/RF nanoparticles. Subsequently, high-temperature ceramization produces nitrogen-doped carbon-silicon composites (SiCNO/C). This approach enables the preparation of composite nanomaterials with adjustable sizes (200-1000 nm) and controllable carbon content (20-60 wt%). Nitrogen doping levels range from 4-10 wt%, ensuring uniform distribution of C, Si, N, and O elements within the composite microspheres. Battery performance tests confirm that the presence of a substantial amount of free carbon and effective nitrogen doping increase the active sites on the material surface, resulting in SiCNO/C composites exhibiting high specific capacity and excellent cycling stability as anode materials for lithium-ion batteries. Specifically, the SiCNO/C-1 sample demonstrates an initial discharge capacity of 1309.0 mAh/g, retains 797.6 mAh/g after 100 cycles at 100 mA/g, and maintains 587.0 mAh/g after 400 cycles at 1 A/g. The composite also shows a low volume expansion of 47.7 % after 100 cycles. These results indicate that SiCNO/C microspheres are promising high-capacity and durable anode materials for lithium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Synthesis of a High-Capacity NiO/Ni Foam Anode for Advanced Lithium-Ion Batteries
    Song, Youngseok
    Hwang, Junesun
    Lee, Sukyung
    Thirumalraj, Balamurugan
    Kim, Jae-Hun
    Jenei, Peter
    Gubicza, Jeno
    Choe, Heeman
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (11)
  • [32] Foamed silicon particles as a high capacity anode material for lithium-ion batteries
    Sohn, Myungbeom
    Park, Hyeong-Il
    Kim, Hansu
    CHEMICAL COMMUNICATIONS, 2017, 53 (87) : 11897 - 11900
  • [33] Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability
    Zhang, Hongyu
    Xia, Yueyuan
    Bu, Hongxia
    Wang, Xiaopeng
    Zhang, Meng
    Luo, Youhua
    Zhao, Mingwen
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
  • [34] Superflexible C68-graphyne as a promising anode material for lithium-ion batteries
    Wu, Bozhao
    Jia, Xiangzheng
    Wang, Yanlei
    Hu, Jinxi
    Gao, Enlai
    Liu, Ze
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (29) : 17357 - 17365
  • [35] Designed synthesis of SnO2-C hollow microspheres as an anode material for lithium-ion batteries
    Hu, Lin-Lin
    Yang, Li-Ping
    Zhang, Dong
    Tao, Xian-Sen
    Zeng, Chen
    Cao, An-Min
    Wan, Li-Jun
    CHEMICAL COMMUNICATIONS, 2017, 53 (81) : 11189 - 11192
  • [36] Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries
    Dong, Xiaowan
    Ding, Bing
    Guo, Hongshuai
    Dou, Hui
    Zhang, Xiaogang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) : 38101 - 38108
  • [37] Artificial Composite Anode Comprising High-Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium-Ion Batteries
    Breitung, Ben
    Schneider, Artur
    Chakravadhanula, Sai Kiran
    Suchomski, Christian
    Janek, Juergen
    Sommer, Heino
    Brezesinski, Torsten
    BATTERIES & SUPERCAPS, 2018, 1 (01) : 27 - 32
  • [38] Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries
    Chiu, Kuo-Feng
    Su, Shih-Hsuan
    Leu, Hoang-Jyh
    Hsia, Chen-Hsien
    THIN SOLID FILMS, 2015, 596 : 29 - 33
  • [39] Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries
    Sun, Yongming
    Hu, Xianluo
    Luo, Wei
    Xia, Fangfang
    Huang, Yunhui
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (19) : 2436 - 2444
  • [40] Germanium based glass modified by graphene as anode material with high capacity for lithium-ion batteries
    Feng, Siguang
    Li, Xinlong
    Shang, Chen
    Tang, Liangpeng
    Zhang, Junjie
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2024, 646