Experimental study on the static properties of bamboo fiber reinforced ultra-high performance concrete (UHPC)

被引:1
|
作者
Zhao, Hua [1 ]
Tang, Jie [1 ]
Li, Ziwei [1 ]
Zhou, Tao [1 ]
Xiong, Tianwang [1 ]
机构
[1] Nanchang Univ, Sch Infrastruct & Engn, 999 Xuexue Ave, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
UHPC; Bamboo fiber; Mechanical properties; Microstructure; Degradation behavior; COMPOSITES; SISAL; STRENGTH;
D O I
10.1016/j.conbuildmat.2024.138974
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Bamboo fiber, as a natural and sustainable material, offers low cost, high strength, and environmental benefits, showing significant potential in composite material reinforcement. This study investigates the effects of bamboo fiber on the static properties of ultra-high performance concrete (UHPC) through experimental research. Different fiber lengths (6 mm, 12 mm, 18 mm) and volume contents (0.5 %, 1.0 %, 1.5 %, 2.0 %) were examined for their impact on the workability, mechanical properties, and pore/void structure of UHPC. The results demonstrate that while bamboo fiber incorporation reduces workability, it significantly enhances compressive and flexural strengths. Specifically, a 21.9 % increase in compressive strength was achieved with 18 mm fibers at 1.0 % content, and a 40.5 % increase in flexural strength was observed with 18 mm fibers at 1.5 % content. Mercury intrusion porosimetry (MIP) and computed tomography (CT) revealed that longer fibers contribute to the formation of larger pores, affecting the void structure. Moreover, bamboo fibers degrade over time in alkaline environments, with a 5 % reduction in tensile strength after 28 days, but the crystallinity of the cellulose has increased. Based on the experimental results, 12 mm bamboo fibers at 1.0-1.5 % content provide the best balance of strength enhancement and workability, making them a promising reinforcement material for UHPC.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [2] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [3] Static and dynamic tensile properties of ultra-high performance concrete (UHPC) reinforced with hybrid sisal fibers
    Zhang, Aimin
    Liu, Kewei
    Li, Jun
    Song, Ruitao
    Guo, Tengfei
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [4] Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC)
    Wang, J. J.
    Zhang, S. S.
    Nie, X. F.
    Yu, T.
    COMPOSITE STRUCTURES, 2023, 312
  • [5] Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements
    Wu, Zemei
    Shi, Caijun
    He, Wen
    Wang, Dehui
    CEMENT & CONCRETE COMPOSITES, 2017, 79 : 148 - 157
  • [6] Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC)
    Zhao, Xin
    Cai, Lei
    Ji, Xiaohua
    Zeng, Wei
    Liu, Jintao
    MATERIALS, 2022, 15 (24)
  • [7] THE SPECIAL PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE (UHPC)
    Barbos, Gheorghe-Alexandru
    ENERGY AND CLEAN TECHNOLOGIES, 2015, : 771 - 778
  • [8] Shrinkage Properties of Ultra-High Performance Concrete (UHPC)
    Koh, Kyungtaek
    Ryu, Gumsung
    Kang, Sutae
    Park, Jungjun
    Kim, Sungwook
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 948 - 952
  • [9] Static and fatigue flexural performance of ultra-high performance fiber reinforced concrete slabs
    Wang, Yan
    Shao, Xudong
    Cao, Junhui
    Zhao, Xudong
    Qiu, Minghong
    ENGINEERING STRUCTURES, 2021, 231
  • [10] Experimental study on shear strength of ultra-high performance fiber reinforced concrete beams
    Xu, Haibin, 1600, Chinese Society of Civil Engineering (47):