The kinematics of 30 Milky Way globular clusters and the multiple stellar populations within

被引:1
作者
Leitinger, E. I. [1 ,2 ,3 ]
Baumgardt, H. [3 ]
Cabrera-Ziri, I. [4 ]
Hilker, M. [1 ]
Carbajo-Hijarrubia, J. [5 ,6 ,7 ]
Gieles, M. [5 ,7 ,8 ]
Husser, T. O. [9 ]
Kamann, S. [10 ]
机构
[1] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[2] Univ Bologna, Dipartimento Fis & Astron, Via Gobetti 93-2, I-40129 Bologna, Italy
[3] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[4] Zentrum Astron Univ Heidelberg, Astron Rechen Inst, Monchhofstr 12-14, D-69120 Heidelberg, Germany
[5] Univ Barcelona UB, Inst Ciencies Cosmos ICCUB, Marti & Franques 1, Barcelona 08028, Spain
[6] Univ Barcelona UB, Dept Fis Quant & Astrofis FQA, Marti & Franques 1, Barcelona 08028, Spain
[7] Inst Estudis Espacials Catalunya IEEC, Gran Capita 2-4, Barcelona 08034, Spain
[8] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
[9] Georg August Univ Gottingen, Inst Astrophys & Geophys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
[10] Liverpool John Moores Univ, Astrophys Res Inst, 146 Brownlow Hill, Liverpool L3 5RF, England
关键词
techniques: imaging spectroscopy; stars: kinematics and dynamics; globular clusters: general; UV LEGACY SURVEY; VELOCITY DISPERSION PROFILES; MOTION HSTPROMO CATALOGS; INITIAL MASS FUNCTION; PROPER-MOTION; DYNAMICAL EVOLUTION; GAIA DR2; INTERNAL KINEMATICS; SUPERMASSIVE STARS; ABUNDANCE PATTERNS;
D O I
10.1051/0004-6361/202452477
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. The spectroscopic and photometric classification of multiple stellar populations (MPs) in Galactic globular clusters (GCs) has enabled comparisons between contemporary observations and formation theories regarding the initial spatial configurations of the MPs. However, the kinematics of these MPs is an aspect that requires more attention. We investigated the 3D kinematics of 30 Galactic GCs, extending to 3-5 half-light radii, as well as their MPs, in order to uncover clues of the initial conditions of GCs and the MPs within. Methods. We have combined Hubble Space Telescope and Gaia DR3 proper motions together with a comprehensive set of line-of- sight velocities to determine the 3D rotation amplitudes, rotation axes, and anisotropy profiles of the clusters. We include additional radial velocities from new IFU observations of NGC 5024 and an analysis of archival MUSE data of NGC 6101. We compare our kinematic results with structural and orbital parameters of each cluster, reporting the most significant correlations and common features. Results. We find significant (>3 sigma) rotation in 21 GCs, with no significant differences between the total rotational amplitudes of the MPs, except for NGC 104. We find no significant differences in the position angles of the rotation axis or inclination angles. We find that the 3D rotational amplitude of the clusters in our sample is strongly correlated with their mass, relaxation time, enriched star fraction, and concentration. We determined the anisotropy profiles of each cluster and the MPs where possible. We investigated correlations with the structural parameters, orbital parameters, and accretion history of the clusters from their progenitor systems, finding that the dynamically young clusters with the highest central concentrations of primordial stars exhibit radial anisotropy in their outer regions (>2 half-light radii). The dynamically young clusters with a central concentration of enriched stars show significant tangential anisotropy or isotropy in their outer regions.
引用
收藏
页数:28
相关论文
共 122 条
[1]  
Abdurro'uf, Accetta K., Aerts C., Et al., ApJS, 259, (2022)
[2]  
Alessandrini E., Lanzoni B., Ferraro F.R., Miocchi P., Vesperini E., ApJ, 833, (2016)
[3]  
Anderson J., Sarajedini A., Bedin L.R., Et al., AJ, 135, (2008)
[4]  
Askar A., Sedda A.M., Giersz M., MNRAS, 478, (2018)
[5]  
Bastian N., Lardo C., ARA&A, 56, (2018)
[6]  
Baumgardt H., MNRAS, 464, (2017)
[7]  
Baumgardt H., Hilker M., MNRAS, 478, (2018)
[8]  
Baumgardt H., Vasiliev E., MNRAS, 505, (2021)
[9]  
Baumgardt H., Hilker M., Sollima A., Bellini A., MNRAS, 482, (2019)
[10]  
Baumgardt H., Henault-Brunet V., Dickson N., Sollima A., MNRAS, 521, (2023)