A Broadband and Transient-Accurate AlGaN/GaN HEMT SPICE Model for X-Band RF Applications

被引:0
|
作者
Dangi, Raghvendra [1 ]
Pampori, Ahtisham [1 ]
Pal, Praveen [1 ]
Nazir, Mohammad Sajid [1 ]
Kushwaha, Pragya [2 ,3 ]
Chauhan, Yogesh Singh [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur 208016, India
[2] Ctr AIoT, Jodhpur 342037, Rajasthan, India
[3] Indian Inst Technol Jodhpur, Applicat, Jodhpur 342037, Rajasthan, India
关键词
Compact model; gallium nitride (GaN); large-signal model; pulsed IV; S-parameters; traps; RECESSED-GATE; DRAIN-LAG; GAN HEMTS; TRAPS;
D O I
10.1109/TED.2024.3487959
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dispersive effects such as trapping play a vital role in determining the performance of AlGaN/gallium nitride (GaN) high-electron mobility transistors (HEMTs) for RF and power applications-necessitating accurate modeling for robust circuit designs. This work presents a rigorous SPICE model to capture the transient and large-signal impact of traps in AlGaN/GaN HEMTs. The model has been implemented in the industry-standard ASM-HEMT compact-model framework. The model accurately accounts for the variation in threshold voltage and change in 2DEG charge carrier concentration in the source-and drain-side access regions under various drain-lag and gate-lag quiescent conditions. Threshold voltage and 2DEG charge carrier concentration at the source-and drain-side access regions show a linear dependence on drain-lag and gate-lag quiescent conditions, respectively. The results obtained using the developed model are in good agreement with the measured data. This model is valid for transient current simulations at different quiescent conditions and accurately captures the large-signal behavior at the optimal load impedance. Finally, pulsed IV characteristics at different temperatures have been validated against device measurements.
引用
收藏
页码:7390 / 7397
页数:8
相关论文
共 50 条
  • [31] A new nonlinear HEMT model for AlGaN/GaN switch applications
    Callet, Guillaume
    Faraj, Jad
    Jardel, Olivier
    Charbonniaud, Christophe
    Jacquet, Jean-Claude
    Reveyrand, Tibault
    Morvan, Erwan
    Piotrowicz, Stephane
    Teyssier, Jean-Pierre
    Quere, R.
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2010, 2 (3-4) : 283 - 291
  • [32] X-band Monolithic GaN HEMT LNA based on Indigenous Process
    Sinha, Pritam Kumar
    Goyal, Umakunt
    Mishra, Meena
    8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024, 2024, : 64 - 66
  • [33] Novel Manufacturing Process of AlGaN/GaN HEMT for X-Band High-Power Application on Si (111) Substrate
    Wang, Cong
    Maharjan, Ram Krishna
    Cho, Sung-Jin
    Kim, Nam-Young
    2012 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC 2012), 2012, : 484 - 486
  • [34] An X-Band GaN HEMT Oscillator with Four-Path Inductors
    Lai, Wen-Cheng
    Jang, Sheng-Lyang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2020, 35 (09): : 1059 - 1063
  • [35] A GaN HEMT X-band Cavity Oscillator with Electronic Gain Control
    Horberg, Mikael
    Kuylenstierna, Dan
    2016 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2016,
  • [36] A 9.5-10.5GHz 60W AlGaN/GaN HEMT for X-band high power application
    Yamamoto, T.
    Mitani, E.
    Inoue, K.
    Nishi, M.
    Sano, S.
    2007 EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE, VOLS 1 AND 2, 2007, : 45 - 47
  • [37] RF Arrhenius Life Testing of X-band GaN HEMTs
    Mittereder, J. A.
    Binari, S. C.
    Via, G. D.
    Roussos, J. A.
    Caldwell, J. D.
    Calame, J. P.
    2008 ROCS WORKSHOP, PROCEEDINGS, 2008, : 195 - 195
  • [38] X-band AlGaN/GaN HEMTs with high microwave power performance
    PENG MingZeng
    Science China(Physics,Mechanics & Astronomy), 2011, (03) : 442 - 445
  • [39] X-band AlGaN/GaN HEMTs with high microwave power performance
    Peng MingZeng
    Zheng YingKui
    Wei Ke
    Chen XiaoJuan
    Liu XinYu
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (03) : 442 - 445
  • [40] An X-Band AlGaN/GaN MMIC Receiver Front-End
    Thorsell, Mattias
    Fagerlind, Martin
    Andersson, Kristoffer
    Billstrom, Niklas
    Rorsman, Niklas
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (01) : 55 - 57