Nonlinear correction method of digital fringe projection 3D measurement system based on precise precoding

被引:0
|
作者
Hong, Hanyu [1 ,2 ]
Zhao, Zibo [2 ]
Zhu, Ying [1 ]
Ye, Liang [1 ]
Xu, Penglin [1 ]
Zhou, Minghao [1 ]
机构
[1] Wuhan Inst Technol, Elect Informat Dept, Wuhan, Peoples R China
[2] Wuhan Inst Technol, Mechatron Dept, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fringe projection; nonlinear intensity response; 3D measurement; precoding; phase error; ACCURATE GAMMA CORRECTION; SHAPE MEASUREMENT; PATTERN PROJECTION; RECONSTRUCTION; CALIBRATION; SATURATION; ALGORITHM; MODEL;
D O I
10.1117/1.OE.63.11.114101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The fringe projection 3D measurement method is a widely used 3D measurement technology, which utilizes a digital projector as the structural light source. However, the nonlinear intensity response of projectors results in non-sinusoidal fringe images captured by cameras, introducing phase errors that undermine measurement accuracy. We propose a nonlinear correction method based on precise pre-coding for digital fringe projection 3D measurement systems. By encoding only two sets of four-step phase-shifting fringe images into the projector and modeling the relationship among gamma value, pre-coding value, and ideal phase, the algorithm estimates accurate pre-coding values. Experimental validation demonstrates significant reductions in phase error standard deviation post-gamma correction on standard whiteboards, leading to an similar to 84 % increase in 3D point cloud height accuracy. In addition, the proposed method effectively mitigates the periodic water ripple phenomenon induced by nonlinear gamma effects. Experimental investigations on plaster sculpture and printed circuit board further validate the method's superiority, achieving higher phase accuracy and point cloud precision, with a measurement accuracy of 0.1 mm.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Efficient 3D measurement of a HDR surface based on adaptive fringe projection
    Hu, Jialing
    Zhu, Jiangping
    Zhou, Pei
    APPLIED OPTICS, 2022, 61 (30) : 9028 - 9036
  • [32] Improved 3D imaging and measurement with fringe projection structured light field
    Zhang, Xiaojie
    Cai, Zewei
    Liu, Xiaoli
    Peng, Xiang
    2019 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING/SPECTROSCOPY AND SIGNAL PROCESSING TECHNOLOGY, 2020, 11438
  • [33] A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector
    Dai, Meiling
    Yang, Fujun
    Liu, Cong
    He, Xiaoyuan
    OPTICS COMMUNICATIONS, 2017, 382 : 294 - 301
  • [34] A new method for high dynamic range 3D measurement combining adaptive fringe projection and original-inverse fringe projection
    Wang, Jianhua
    Yang, Yanxi
    OPTICS AND LASERS IN ENGINEERING, 2023, 163
  • [35] Rapid 3D measurement of colour objects based on three-channel sinusoidal fringe projection
    Bao Wei
    Fu Yanjun
    Zhong Kejun
    Ma Baiheng
    Yan Zhanjun
    JOURNAL OF MODERN OPTICS, 2022, 69 (13) : 741 - 749
  • [36] Fringe projection based quantitative 3D microscopy
    Li, Ameng
    Peng, Xiang
    Yin, Yongkai
    Liu, Xiaoli
    Zhao, Qinping
    Koerner, Klaus
    Osten, Wolfgang
    OPTIK, 2013, 124 (21): : 5052 - 5056
  • [37] High-accuracy 3D measurement technique without phase unwrapping based on fringe projection
    Fu, Yanjun
    Xiao, Wei
    Luo, Lin
    Zhong, Kejun
    Li, Fangfang
    Jiang, Guangyu
    Wang, Dongyang
    OPTICAL ENGINEERING, 2024, 63 (01)
  • [38] Handheld underwater 3D sensor based on fringe projection technique
    Braeuer-Burchardt, Christian
    Heinze, Matthias
    Schmidt, Ingo
    Meng, Lichun
    Ramm, Roland
    Kuehmstedt, Peter
    Notni, Gunther
    VIDEOMETRICS, RANGE IMAGING, AND APPLICATIONS XIII, 2015, 9528
  • [39] High-Speed 3D Topography Measurement Based on Fringe Projection: A Review
    Wu, Zhoujie
    Zhang, Qican
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (08)
  • [40] 3D shape measurement based on color-encoded sinusoidal fringe projection
    Zhang, Qican
    Ma, Ke
    OPTICAL MEASUREMENT SYSTEMS FOR INDUSTRIAL INSPECTION VII, 2011, 8082