Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems

被引:0
作者
Fang, Jiashu [1 ]
Liu, Chongru [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 610054, Peoples R China
[2] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
来源
IENERGY | 2024年 / 3卷 / 04期
基金
中国国家自然科学基金;
关键词
Smart grids; artificial intelligence; deep learning; stability analysis; GENERATIVE ADVERSARIAL NETWORKS; DYNAMIC SECURITY ASSESSMENT; LEARNING-MACHINE; STATE ESTIMATION; PREDICTION; FRAMEWORK; DECISION; OPPORTUNITIES; ENHANCEMENT; CHALLENGES;
D O I
10.23919/IEN.2024.0027
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Effective stability analysis is essential for the secure operation of modern power systems. As smart grids evolve with increased interconnection, renewable energy integration, and electrification, the large-scale deployment of ultra-high voltage AC/DC networks introduces various operational modes and potential fault points, posing significant challenges to maintaining stability. Traditional analysis and control methods fall short under these conditions. In contrast, emerging artificial intelligence (AI) techniques, combined with real-time data collection, provide powerful tools for enhancing stability analysis in smart grids. This paper comprehensively explores AI techniques in stability analysis, discussing the necessity and rationale for integrating AI into stability analysis through the lenses of knowledge fusion, discovery, and adaptation. It provides a thorough review of current studies on AI applications in stability analysis, addresses key challenges, and outlines future prospects for AI integration, highlighting its potential to improve analytical capabilities in complex power systems.
引用
收藏
页码:194 / 215
页数:22
相关论文
共 50 条
  • [11] Artificial intelligence techniques in liver cancer
    Wang, Lulu
    Fatemi, Mostafa
    Alizad, Azra
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [12] Optimization of the Hydrothermal Power Systems Operation Planning Based on Artificial Intelligence Techniques
    Antunes, F.
    de Alencar, T. R.
    Asano, P. T. L.
    Vitorri, K.
    Rabelo, R. A. L.
    Toufen, D. L.
    IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (08) : 1615 - 1624
  • [13] Artificial Intelligence Techniques Applied on Renewable Energy Systems: A Review
    Lateef, Ali Azawii Abdul
    Al-Janabi, Sameer I. Ali
    Abdulteef, Omar Azzawi
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 297 - 308
  • [14] Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities
    Machlev, R.
    Heistrene, L.
    Perl, M.
    Levy, K. Y.
    Belikov, J.
    Mannor, S.
    Levron, Y.
    ENERGY AND AI, 2022, 9
  • [15] Artificial intelligence techniques for ground fault line selection in power systems: State-of-the-art and research challenges
    Wang, Fuhua
    Zhang, Zongdong
    Wu, Kai
    Jian, Dongxiang
    Chen, Qiang
    Zhang, Chao
    Dong, Yanling
    He, Xiaotong
    Dong, Lin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14518 - 14549
  • [16] Neonatal intensive care decision support systems using artificial intelligence techniques: a systematic review
    Malak, Jaleh Shoshtarian
    Zeraati, Hojjat
    Nayeri, Fatemeh Sadat
    Safdari, Reza
    Shahraki, Azimeh Danesh
    ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (04) : 2685 - 2704
  • [17] Comparison of Artificial Intelligence Techniques for The Enhancement of Power Quality
    Bangia, Sakshi
    Sharma, P. R.
    Garg, Maneesha
    2013 INTERNATIONAL CONFERENCE ON POWER, ENERGY AND CONTROL (ICPEC), 2013, : 537 - 541
  • [18] Roadmap on artificial intelligence and big data techniques for superconductivity
    Yazdani-Asrami, Mohammad
    Song, Wenjuan
    Morandi, Antonio
    De Carne, Giovanni
    Murta-Pina, Joao
    Pronto, Anabela
    Oliveira, Roberto
    Grilli, Francesco
    Pardo, Enric
    Parizh, Michael
    Shen, Boyang
    Coombs, Tim
    Salmi, Tiina
    Wu, Di
    Coatanea, Eric
    Moseley, Dominic A.
    Badcock, Rodney A.
    Zhang, Mengjie
    Marinozzi, Vittorio
    Tran, Nhan
    Wielgosz, Maciej
    Skoczen, Andrzej
    Tzelepis, Dimitrios
    Meliopoulos, Sakis
    Vilhena, Nuno
    Sotelo, Guilherme
    Jiang, Zhenan
    Grosse, Veit
    Bagni, Tommaso
    Mauro, Diego
    Senatore, Carmine
    Mankevich, Alexey
    Amelichev, Vadim
    Samoilenkov, Sergey
    Yoon, Tiem Leong
    Wang, Yao
    Camata, Renato P.
    Chen, Cheng-Chien
    Madureira, Ana Maria
    Abraham, Ajith
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2023, 36 (04)
  • [19] Artificial intelligence in digital breast pathology: Techniques and applications
    Ibrahim, Asmaa
    Gamble, Paul
    Jaroensri, Ronnachai
    Abdelsamea, Mohammed M.
    Mermel, Craig H.
    Chen, Po-Hsuan Cameron
    Rakha, Emad A.
    BREAST, 2020, 49 : 267 - 273
  • [20] Application of Artificial Intelligence in Wind Power Systems
    Bosnjakovic, Mladen
    Martinovic, Marko
    Dokic, Kristian
    APPLIED SCIENCES-BASEL, 2025, 15 (05):