A Comparison Study of Hybrid Energy Storage System Topologies for Electric Vehicles

被引:0
作者
Al Takrouri, Mohammad [1 ]
Ayob, Shahrin Bin Md [1 ]
Idris, Nik Rumzi Nik [1 ]
Aziz, Mohd Junaidi Abdul [1 ]
Ayop, Razman [1 ]
Ghith, Ehab Saif [2 ]
Tlija, Mehdi [3 ]
Majeed, Afraz Hussain [4 ]
Arfeen, Zeeshan Ahmad [5 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Johor Baharu 81310, Malaysia
[2] Ain Shams Univ, Fac Engn, Dept Mechatron, Cairo 11566, Egypt
[3] King Saud Univ, Coll Engn, Dept Ind Engn, Riyadh 11421, Saudi Arabia
[4] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China
[5] Islamia Univ Bahawalpur IUB, Dept Elect Engn, Bahawalpur 63100, Pakistan
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Topology; Batteries; Motors; Voltage control; Energy management; Supercapacitors; Inverters; DC-DC power converters; Bridge circuits; Resistance; Energy storage; Electric vehicles; Supercapacitor; hybrid energy storage system topologies; electric vehicles; STRATEGIES; VOLTAGE;
D O I
10.1109/ACCESS.2024.3476513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study presents a comprehensive comparison of battery-only, passive, and semi-active hybrid energy storage system (HESS) topologies for electric vehicle (EV) applications. Despite numerous studies on HESS topologies for EVs, there remains a lack of consensus regarding the optimal topology, with limited attempts to address this gap through comprehensive comparisons. Previous research has focused on comparing different semi-active topologies through simulations, neglecting passive approaches and employing best-case scenarios for the energy management system (EMS), disregarding widely used rule-based power follower strategies. The present study aims to address the research gap by conducting a comprehensive comparison of battery-only, passive, and semi-active topologies for a realistic EV application case, focusing on their ability to enhance DC bus voltage stability, RMS battery current, and maximum battery current. The performance of these topologies is evaluated through simulations and experimental validation, with the system under investigation based on the parameters of an electrically converted vehicle. Results show that while the passive HESS topology delivers excellent RMS battery current performance, comparable to the semi-active SC/battery system, it falls short in reducing the maximum battery peak current where the semi-active topologies excel. Additionally, both passive and semi-active SC/battery topologies significantly improve the standard deviation and variation of the DC bus voltage. This study highlights the importance of topology selection in reducing battery degradation in EVs, contributing to the understanding of topology-dependent characteristics, power flow control, discharge rates of the battery pack, and DC bus voltage stability in HESS for EVs.
引用
收藏
页码:171675 / 171688
页数:14
相关论文
共 50 条
  • [21] Investigation of Energy Distribution and Power Split of Hybrid Energy Storage Systems in Electric Vehicles
    Xue, X. D.
    Cheng, K. W. Eric
    Raman, S. Raghu
    Fong, Y. C.
    Wang, X. L.
    2016 INTERNATIONAL SYMPOSIUM ON ELECTRICAL ENGINEERING (ISEE), 2016,
  • [22] Compound-Type Hybrid Energy Storage System and Its Mode Control Strategy for Electric Vehicles
    Wang, Bin
    Xu, Jun
    Cao, Binggang
    Li, Qiyu
    Yang, Qingxia
    JOURNAL OF POWER ELECTRONICS, 2015, 15 (03) : 849 - 859
  • [23] A New Battery/Ultra-Capacitor Hybrid Energy Storage System for Electric, Hybrid and Plug-in Hybrid Electric Vehicles
    Cao, Jian
    Emadi, Ali
    2009 IEEE VEHICLE POWER AND PROPULSION CONFERENCE, VOLS 1-3, 2009, : 837 - 842
  • [24] A Supervisory Controller for a Hybrid Energy Storage System with Two Propulsion Machines in Electric Vehicles
    Yavasoglu, Huseyin A.
    Shen, Junyi
    Shi, Chuan
    Khaligh, Alireza
    2015 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES & POWER ELECTRONICS (ACEMP), 2015 INTL CONFERENCE ON OPTIMIZATION OF ELECTRICAL & ELECTRONIC EQUIPMENT (OPTIM) & 2015 INTL SYMPOSIUM ON ADVANCED ELECTROMECHANICAL MOTION SYSTEMS (ELECTROMOTION), 2015, : 610 - +
  • [25] Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles
    Zhang, Cong
    Wang, Dai
    Wang, Bin
    Tong, Fan
    ENERGIES, 2020, 13 (01)
  • [26] Research on the voltage of Hybrid Energy Storage System in Charging Electric Vehicles
    Li, Kai
    Chen, Xiang-Qun
    Li, Jing-Bo
    Zeng, He-Qing
    Yang, Lei
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIAL ENGINEERING AND APPLICATION (ICMEA 2016), 2016, 103 : 27 - 31
  • [27] Fuzzy Control of Energy Recovery in Electric Vehicles with Hybrid Energy Storage
    Vodovozov, Valery
    Aksjonov, Andrei
    Ricciardi, Vincenzo
    Raud, Zoja
    7TH INTERNATIONAL CONFERENCE ON CLEAN ELECTRICAL POWER (ICCEP 2019): RENEWABLE ENERGY RESOURCES IMPACT, 2019, : 345 - 350
  • [28] CEEMD-Fuzzy Control Energy Management of Hybrid Energy Storage Systems in Electric Vehicles
    Shen, Yongpeng
    Xie, Junchao
    He, Ting
    Yao, Lei
    Xiao, Yanqiu
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (01) : 555 - 566
  • [29] A Comparative Study of Adaptive Filtering Strategies for Hybrid Energy Storage Systems in Electric Vehicles
    Nguyen, Hoai-Linh T.
    Nguyen, Bao-Huy
    Vo-Duy, Thanh
    Trovao, Joao Pedro F.
    ENERGIES, 2021, 14 (12)
  • [30] Efficiency Analysis of Drive Train Topologies Applied to Electric/Hybrid Vehicles
    Estima, Jorge O.
    Marques Cardoso, Antonio J.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2012, 61 (03) : 1021 - 1031